Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 14(4): e1007319, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702647

RESUMO

Invasive fungal infections caused by the pathogen Candida albicans have transitioned from a rare curiosity to a major cause of human mortality. This is in part due to the emergence of resistance to the limited number of antifungals available to treat fungal infections. Azoles function by targeting the biosynthesis of ergosterol, a key component of the fungal cell membrane. Loss-of-function mutations in the ergosterol biosynthetic gene ERG3 mitigate azole toxicity and enable resistance that depends upon fungal stress responses. Here, we performed a genome-wide synthetic genetic array screen in Saccharomyces cerevisiae to map ERG3 genetic interactors and uncover novel circuitry important for azole resistance. We identified nine genes that enabled erg3-mediated azole resistance in the model yeast and found that only two of these genes had a conserved impact on resistance in C. albicans. Further, we screened a C. albicans homozygous deletion mutant library and identified 13 genes for which deletion enhances azole susceptibility. Two of the genes, RGD1 and PEP8, were also important for azole resistance acquired by diverse mechanisms. We discovered that loss of function of retrograde transport protein Pep8 overwhelms the functional capacity of the stress response regulator calcineurin, thereby abrogating azole resistance. To identify the mechanism through which the GTPase activator protein Rgd1 enables azole resistance, we selected for mutations that restore resistance in strains lacking Rgd1. Whole genome sequencing uncovered parallel adaptive mechanisms involving amplification of both chromosome 7 and a large segment of chromosome 3. Overexpression of a transporter gene on the right portion of chromosome 3, NPR2, was sufficient to enable azole resistance in the absence of Rgd1. Thus, we establish a novel mechanism of adaptation to drug-induced stress, define genetic circuitry underpinning azole resistance, and illustrate divergence in resistance circuitry over evolutionary time.


Assuntos
Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/fisiologia , Farmacorresistência Fúngica/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Micoses/microbiologia , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA