Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Curr Genet ; 64(4): 821-839, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29288414

RESUMO

Trypanosomatids are parasitic protozoans characterized by several unique structural and metabolic processes that include exquisite mechanisms associated with gene expression and regulation. During the initiation of protein synthesis, for instance, mRNA selection for translation seems to be mediated by different eIF4F-like complexes, which may play a significant role in parasite adaptation to different hosts. In eukaryotes, the heterotrimeric eIF4F complex (formed by eIF4E, eIF4G, and eIF4A) mediates mRNA recognition and ribosome binding and participates in various translation regulatory events. Six eIF4Es and five eIF4Gs have been described in trypanosomatids with several of these forming different eIF4F-like complexes. This has raised questions about their role in differential mRNA translation. Here we have studied further TbEIF4E2, the least known eIF4E homologue from Trypanosoma brucei, and found that it is not associated with an eIF4G homolog. It is, however, associated with mature mRNAs and binds to a histone mRNA stem-loop-binding protein (SLBP), one of two Trypanosoma SLBP homologs (TbSLBP1 and TbSLBP2). TbSLBP1 is more similar to the mammalian counterpart while TbSLBP2 is exclusive to trypanosomatids and related organisms. TbSLBP2 binds to TbEIF4E2 through a conserved central region missing in other SLBP homologs. Both SLBPs, as well as TbEIF4E2, were found to localize to the cytoplasm. TbEIF4E2 and TbSLBP2 are differentially expressed during cell culture, being more abundant in early-log phase, with TbSLBP2 also showing cell-cycle dependent expression. The new data reinforce unique aspects of the trypanosomatid eIF4Es, with the TbEIF4E2-TbSLBP complex possibly having a role in differential selection of mRNAs containing stem-loop structures.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Proteínas Nucleares/genética , Trypanosoma brucei brucei/genética , Tripanossomíase/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Sequência de Aminoácidos/genética , Expressão Gênica/genética , Histonas/genética , Humanos , Ligação Proteica , Biossíntese de Proteínas/genética , Proteínas de Ligação ao Cap de RNA/genética , RNA Mensageiro/genética , Alinhamento de Sequência , Tripanossomíase/parasitologia
2.
Pestic Biochem Physiol ; 131: 1-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27265820

RESUMO

The tomato leafminer, Tuta absoluta, now a major pest of tomato crops worldwide, is primarily controlled using chemical insecticides. Recently, high levels of resistance to the insecticide spinosad have been described in T. absoluta populations in Brazil. Selection of a resistant field-collected strain led to very high levels of resistance to spinosad and cross-resistance to spinetoram, but not to other insecticides that target the nicotinic acetylcholine receptor (nAChR). In this study the mechanisms underlying resistance to spinosad were investigated using toxicological, biochemical and molecular approaches. Inhibition of metabolic enzymes using synergists and biochemical assessment of detoxification enzyme activity provided little evidence of metabolic resistance in the selected strain. Cloning and sequencing of the nAChR α6 subunit from T. absoluta, the spinosad target-site, from susceptible and spinosad-resistant strains were done to investigate the role of a target-site mechanism in resistance. A single nucleotide change was identified in exon 9 of the α6 subunit of the resistant strain, resulting in the replacement of the glycine (G) residue at position 275 observed in susceptible T. absoluta strains with a glutamic acid (E). A high-throughput DNA-based diagnostic assay was developed and used to assess the prevalence of the G275E mutation in 17 field populations collected from different geographical regions of Brazil. The resistant allele was found at low frequency, and in the heterozygous form, in seven of these populations but at much higher frequency and in the homozygous form in a population collected in the Iraquara municipality. The frequency of the mutation was significantly correlated with the mortality of these populations in discriminating dose bioassays. In summary our results provide evidence that the G275E mutation is an important mechanism of resistance to spinosyns in T. absoluta, and may be used as a marker for resistance monitoring in field populations.


Assuntos
Substituição de Aminoácidos/genética , Inseticidas/farmacologia , Macrolídeos/farmacologia , Mariposas/genética , Receptores Nicotínicos/genética , Animais , Combinação de Medicamentos , Resistência a Inseticidas , Mariposas/enzimologia
3.
RNA Biol ; 12(3): 305-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826663

RESUMO

In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.


Assuntos
Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Leishmania major/genética , Iniciação Traducional da Cadeia Peptídica , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Sítios de Ligação , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica , Leishmania major/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/metabolismo
4.
Front Mol Biosci ; 9: 971811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275617

RESUMO

Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.

5.
Eukaryot Cell ; 9(10): 1484-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675580

RESUMO

Trypanosomatid protozoans are reliant on posttranscriptional processes to control gene expression. Regulation occurs at the levels of mRNA processing, stability, and translation, events that may require the participation of the poly(A) binding protein (PABP). Here, we have undertaken a functional study of the three distinct Leishmania major PABP (LmPABP) homologues: the previously described LmPABP1; LmPABP2, orthologous to the PABP described from Trypanosoma species; and LmPABP3, unique to Leishmania. Sequence identity between the three PABPs is no greater than 40%. In assays measuring binding to A-rich sequences, LmPABP1 binding was poly(A) sensitive but heparin insensitive; LmPABP2 binding was heparin sensitive and less sensitive to poly(A), compatible with unique substitutions observed in residues implicated in poly(A) binding; and LmPABP3 displayed intermediate properties. All three homologues are simultaneously expressed as abundant cytoplasmic proteins in L. major promastigotes, but only LmPABP1 is present as multiple isoforms. Upon transcription inhibition, LmPABP2 and -3 migrated to the nucleus, while LmPABP1 remained predominantly cytoplasmic. Immunoprecipitation assays showed an association between LmPABP2 and -3. Although the three proteins bound to a Leishmania homologue of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) (LmEIF4G3) in vitro, LmPABP1 was the only one to copurify with native LmEIF4G3 from cytoplasmic extracts. Functionality was tested using RNA interference (RNAi) in Trypanosoma brucei, where both orthologues to LmPABP1 and -2 are required for cellular viability. Our results indicate that these homologues have evolved divergent functions, some of which may be unique to the trypanosomatids, and reinforces a role for LmPABP1 in translation through its interaction with the eIF4G homologue.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Leishmania major/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sobrevivência Celular , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Dados de Sequência Molecular , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Ligação Proteica , Biossíntese de Proteínas , Interferência de RNA , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
Mol Biochem Parasitol ; 227: 15-18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30444978

RESUMO

A Trypanosoma brucei cell line is described that produces a visual readout of proteasome activity. The cell line contains an integrated transgene encoding an ubiquitin-green fluorescent protein (GFP) fusion polypeptide responsive to the addition of proteasome inhibitors. A modified version of T. brucei ubiquitin unable to be recognized by deubiquitinases (UbG76V) was fused to eGFP and constitutively expressed. The fusion protein is unstable but addition of the proteasome inhibitor lactacystin stabilizes it and leads to visually detectable GFP. This cell line can be widely used to monitor the efficiency of inhibitor treatment through detection of GFP accumulation in studies involving proteasome-mediated proteolysis, screening of proteasome inhibitors or other events related to the ubiquitin-proteasome pathway.


Assuntos
Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteassoma/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Ubiquitina/metabolismo
7.
J Microbiol Methods ; 166: 105732, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31629910

RESUMO

Leishmaniasis, caused by protozoa belonging to the genus Leishmania, is an important public health problem found in >90 countries and with still limited options for treatment. Development of new anti-leishmanial drugs is an urgent need and the identification of new active compounds is a limiting factor that can be accelerated through large scale drug screening. This requires multiple steps and can be expensive and time consuming. Here, we propose an alternative approach for the colorimetric assessment of anti-Leishmania drug activity that can be easily scaled up. L. amazonensis and L. infantum cell lines were generated having the ß-galactosidase (ß-gal) gene integrated into their chromosomal 18S rRNA (ssu) locus. Both cell lines expressed high levels of ß-gal and had their growth easily monitored and quantified colorimetrically. These two cell lines were then evaluated as tools to assess drug susceptibility and their use was validated through in vitro assays with Amphotericin B, which is routinely used against leishmaniasis. ß-gal expression was also confirmed through flow-cytometry, another method of phenotypic detection. With these recombinant parasites, an alternative in vitro model of drug screening against cutaneous and visceral leishmaniasis is now available.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Animais , Células Cultivadas , Leishmania infantum/metabolismo , Leishmania mexicana/metabolismo , beta-Galactosidase/metabolismo
8.
Mol Biochem Parasitol ; 190(2): 82-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23867205

RESUMO

The eukaryotic eIF4F complex, the cap binding complex, functions during translation initiation through interactions mediated by its three subunits (eIF4E, eIF4G and eIF4A), other initiation factors and the ribosome. In trypanosomatids, various eIF4E and eIF4G homologues were identified, with two eIF4F-like complexes confirmed (EIF4E4/EIF4G3/EIF4AI and EIF4E3/EIF4G4/EIF4AI). Here, the expression pattern of these complexes was investigated during Leishmania amazonensis and Trypanosoma brucei growth. The two sets of eIF4E and eIF4G homologues were found represented by phosphorylated isoforms with multiple phosphorylation events targeting the two eIF4E homologues. Expression of these multiple isoforms was differentially affected by inhibitors of mRNA synthesis/processing and translation. Phosphorylated EIF4E4 was consistently associated with early/active growth phases in both organisms studied. In T. brucei phosphorylation of both EIF4E3 and 4, overexpressed as HA-tagged fusions, was partially mapped to their N-terminuses. Our results indicate that phosphorylation is associated with a further layer of complexity in translation initiation in trypanosomatids.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/enzimologia , Leishmania/crescimento & desenvolvimento , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Fator de Iniciação Eucariótico 4G/metabolismo , Perfilação da Expressão Gênica , Fosforilação , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo
10.
Mol Biochem Parasitol ; 176(1): 25-36, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21111007

RESUMO

Translation initiation in eukaryotes requires eIF4E, the cap binding protein, which mediates its function through an interaction with the scaffolding protein eIF4G, as part of the eIF4F complex. In trypanosomatids, four eIF4E homologues have been described but the specific function of each is not well characterized. Here, we report a study of these proteins in Trypanosoma brucei (TbEIF4E1 through 4). At the sequence level, they can be assigned to two groups: TbEIF4E1 and 2, similar in size to metazoan eIF4E1; and TbEIF4E3 and 4, with long N-terminal extensions. All are constitutively expressed, but whilst TbEIF4E1 and 2 localize to both the nucleus and cytoplasm, TbEIF4E3 and 4 are strictly cytoplasmic and are also more abundant. After knockdown through RNAi, TbEIF4E3 was the only homologue confirmed to be essential for viability of the insect procyclic form. In contrast, TbEIF4E1, 3 and 4 were all essential for the mammalian bloodstream form. Simultaneous RNAi knockdown of TbEIF4E1 and 2 caused cessation of growth and death in procyclics, but with a delayed impact on translation, whilst knockdown of TbEIF4E3 alone or a combined TbEIF4E1 and 4 knockdown led to substantial translation inhibition which preceded cellular death by several days, at least. Only TbEIF4E3 and 4 were found to interact with T. brucei eIF4G homologues; TbEIF4E3 bound both TbEIF4G3 and 4 whilst TbEIF4E4 bound only to TbEIF4G3. These results are consistent with TbEIF4E3 and 4 having distinct but relevant roles in initiation of protein synthesis.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Trypanosoma/genética , Trypanosoma/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Citoplasma/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Regulação da Expressão Gênica , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico/fisiologia , Interferência de RNA , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA