Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(1): 014203, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610974

RESUMO

Theoretical calculations of the low-frequency anharmonic couplings of the ß-phase of crystalline bromoform are presented based on density functional theory quantum chemistry calculations. The electrical and mechanical anharmonicities between intra- and intermolecular modes are calculated, revealing that the electrical anharmonicity dominates the cross-peak intensities in the 2D Raman-THz response and crystalline, as well as liquid, bromoform. Furthermore, the experimentally observed difference in relative cross-peak intensities between the two intramolecular modes of bromoform and the intermolecular modes can be explained by the C3v-symmetry of bromoform in combination with orientational averaging. The good agreement with the experimental results provides further evidence for our interpretation that the 2D Raman-THz response of bromoform is, indeed, related to the anharmonic coupling between the intra- and intermolecular modes.

2.
J Chem Phys ; 156(17): 174501, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525660

RESUMO

Two-dimensional (2D) Raman-THz spectroscopy in the frequency of up to 7 THz has been applied to study the crystalline ß-phase of bromoform (CHBr3). As for liquid CHBr3, cross peaks are observed, which, however, sharpen up in the crystalline sample and split into assignable sub-contributions. In the Raman dimension, the frequency positions of these cross peaks coincide with the intramolecular bending modes of the CHBr3 molecules and in the THz dimension with the IR-active lattice modes of the crystal. This work expands the applicability of this new 2D spectroscopic technique to solid samples at cryogenic temperatures. Furthermore, it provides new experimental evidence that the cross peaks, indeed, originate from the coupling between intra- and intermolecular vibrational modes.

3.
Appl Opt ; 55(12): 3233-40, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140093

RESUMO

Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA