Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139450

RESUMO

Given that pectin is a well-known substance used for drug delivery, we aimed to obtain and further examine the efficacy of interpolyelectrolyte complexes based on citrus or apple pectin and the Eudragit® EPO for using these carriers in oral drug delivery. To characterize the physicochemical properties of these compounds, turbidity, gravimetry, viscosity, elementary analysis, FTIR spectroscopy, and DSC analysis were utilized. Diffusion transport characteristics were evaluated to assess the swelling ability of the matrices and the release of diclofenac sodium. To examine the release parameters, mathematical modeling was performed by using the Korsmayer-Peppas and Logistic equations as well. During the turbidity study, stoichiometry compositions were selected for the developed IPECs EPO/PecA and EPO/PecC at pH values = 4.0, 5.0, 6.0, and 7.0. The FTIR spectra of the complexes were characterized by an increase in the intensity of the bands at 1610 cm-1 and 1400 cm-1. According to the DSC analysis, IPEC has a certain Tg = 57.3 °C. The highest release rates were obtained for IPEC EPO/PecC_1 and EPO/PecC_4. The mechanism of drug transport from the matrices IPEC EPO/PecC, IPEC EPO/PecA_3, and EPO/PecA_4 can be characterized as Super Case II. Anomalous release (non-Fickian release) is typical for IPEC EPO/PecA_1 and EPO/PecA_2. Thus, the resulting systems can be further used for the effective delivery of the drugs to the colon.


Assuntos
Portadores de Fármacos , Pectinas , Portadores de Fármacos/química , Solubilidade , Sistemas de Liberação de Medicamentos/métodos , Ácidos Polimetacrílicos/química , Colo , Concentração de Íons de Hidrogênio
2.
Nanomedicine ; 37: 102432, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186258

RESUMO

Nasal administration offers a possibility of delivering drugs to the brain. In the present work, nasal drug delivery systems were designed based on cationic Eudragit® EPO (EPO) and anionic Eudragit® L100-55 (L100-55) methacrylate copolymers. Two types of nanocarriers were prepared using interpolyelectrolyte complexation between these polymers. The first type of nanoparticles was prepared by forming interpolyelectrolyte complexes between unmodified EPO and L100-55. The second type of nanoparticles was formed through the complexation between PEGylated L100-55 and EPO. For this purpose, PEGylated L100-55 was synthesized by chemical conjugation of L100-55 with O-(2-aminoethyl)polyethylene glycol. The mucoadhesive properties of these nanoparticles were evaluated ex vivo using sheep nasal mucosa. Nanoparticles based on EPO and L100-55 exhibited mucoadhesive properties towards nasal mucosa, whereas PEGylated nanoparticles were non-mucoadhesive hence displayed mucus-penetrating properties. Both types of nanoparticles were used to formulate haloperidol and their ability to deliver the drug to the brain was evaluated in rats in vivo.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polieletrólitos/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Administração Intranasal , Animais , Humanos , Muco/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Polieletrólitos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Ovinos , Solubilidade/efeitos dos fármacos
3.
Mol Pharm ; 14(10): 3528-3538, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28825493

RESUMO

Crown ethers are cyclic molecules consisting of a ring containing several ether groups. The most common and important members of this series are 12-crown-4 (12C4), 15-crown-5 (15C5), and 18-crown-6 (18C6). These container molecules have the ability to sequester metal ions, and their complexes with drugs are able to traverse cell membranes. This study investigated 12C4, 15C5, and 18C6 for their ability to increase solubility of ocular drugs and enhance their penetration into the cornea. Phase solubility analysis determined crown ethers' ability to enhance the solubility of riboflavin, a drug used for the therapy of keratoconus, and these solutions were investigated for ocular drug permeation enhancing properties. Atomic absorption spectroscopy demonstrated crown ether solutions' ability to sequester Ca2+ from corneal epithelia, and crown ether mediated adsorption of riboflavin into the stroma was investigated. Induced corneal opacity studies assessed potential toxicity of crown ethers. Crown ethers enhanced riboflavin's aqueous solubility and its penetration into in vitro bovine corneas; the smaller sized crown ethers gave greatest enhancement. They were shown to sequester Ca2+ ions from corneal epithelia; doing so loosens cellular membrane tight junctions thus enhancing riboflavin penetration. Induced corneal opacity was similar to that afforded by benzalkonium chloride and less than is produced using polyaminocarboxylic acids. However, in vivo experiments performed in rats with 12C4 did not show any statistically significant permeability enhancement compared to enhancer-free formulation.


Assuntos
Substância Própria/metabolismo , Éteres de Coroa/farmacologia , Epitélio Corneano/metabolismo , Soluções Oftálmicas/farmacologia , Riboflavina/farmacologia , Administração Oftálmica , Animais , Compostos de Benzalcônio/farmacologia , Cálcio/metabolismo , Bovinos , Opacidade da Córnea/induzido quimicamente , Substância Própria/efeitos dos fármacos , Composição de Medicamentos/métodos , Epitélio Corneano/efeitos dos fármacos , Ceratocone/tratamento farmacológico , Masculino , Soluções Oftálmicas/uso terapêutico , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Riboflavina/uso terapêutico , Solubilidade/efeitos dos fármacos , Espectrofotometria Atômica/métodos , Junções Íntimas/efeitos dos fármacos
4.
Pharmaceutics ; 15(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36986782

RESUMO

In this study, a water-soluble form of haloperidol was obtained by coaggregation with calix[4]resorcinol bearing viologen groups on the upper rim and decyl chains on the lower rim to form vesicular nanoparticles. The formation of nanoparticles is achieved by the spontaneous loading of haloperidol into the hydrophobic domains of aggregates based on this macrocycle. The mucoadhesive and thermosensitive properties of calix[4]resorcinol-haloperidol nanoparticles were established by UV-, fluorescence and CD spectroscopy data. Pharmacological studies have revealed low in vivo toxicity of pure calix[4]resorcinol (LD50 is 540 ± 75 mg/kg for mice and 510 ± 63 mg/kg for rats) and the absence of its effect on the motor activity and psycho-emotional state of mice, which opens up a possibility for its use in the design of effective drug delivery systems. Haloperidol formulated with calix[4]resorcinol exhibits a cataleptogenic effect in rats both when administered intranasally and intraperitoneally. The effect of the intranasal administration of haloperidol with macrocycle in the first 120 min is comparable to the effect of commercial haloperidol, but the duration of catalepsy was shorter by 2.9 and 2.3 times (p < 0.05) at 180 and 240 min, respectively, than that of the control. There was a statistically significant reduction in the cataleptogenic activity at 10 and 30 min after the intraperitoneal injection of haloperidol with calix[4]resorcinol, then there was an increase in the activity by 1.8 times (p < 0.05) at 60 min, and after 120, 180 and 240 min the effect of this haloperidol formulation was at the level of the control sample.

5.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883693

RESUMO

The choice of drug delivery carrier is of paramount importance for the fate of a drug in a human body. In this study, we have prepared the hybrid nanoparticles composed of FDA-approved Eudragit L100-55 copolymer and polymeric surfactant Brij98 to load haloperidol-an antipsychotic hydrophobic drug used to treat schizophrenia and many other disorders. This platform shows good drug-loading efficiency and stability in comparison to the widely applied platforms of mesoporous silica (MSN) and a metal-organic framework (MOF). ZIF8, a biocompatible MOF, failed to encapsulate haloperidol, whereas MSN only showed limited encapsulation ability. Isothermal titration calorimetry showed that haloperidol has low binding with the surface of ZIF8 and MSN in comparison to Eudragit L100-55/Brij98, thus elucidating the striking difference in haloperidol loading. With further optimization, the haloperidol loading efficiency could reach up to 40% in the hybrid Eudragit L100-55/Brij98 nanoparticles with high stability over several months. Differential scanning calorimetry studies indicate that the encapsulated haloperidol stays in an amorphous state inside the Eudragit L100-55/Brij98 nanoparticles. Using a catalepsy and open field animal tests, we proved the prolongation of haloperidol release in vivo, resulting in later onset of action compared to the free drug.

6.
Polymers (Basel) ; 12(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629765

RESUMO

Interpolymer complexes (IPC) based on Eudragit® EPO and Eudragit® S100 were investigated as potential carriers for oral controlled drug delivery to the colon. IPC samples were prepared by mixing copolymer solutions in organic solvents (ethanol, isopropanol:acetone mixture (60:40, % v/v) and tetrahydrofuran). According to the data of elemental analysis, FTIR-spectroscopy, X-ray photoelectron spectroscopy and thermal analysis these IPCs have excess of anionic copolymer (Eudragit® S100) in their structure; they are stabilized by hydrogen and ionic intermacromolecular bonds and do not include free copolymer domains. IPC have pH-independent swelling properties in the media mimicking gastrointestinal tract (GIT) conditions and provide colon-specific delivery of indomethacin in buffer solutions (pH 1.2; 5.8; 6.8; 7.4) and in biorelevant media (fasted state simulated gastric fluid, fasted state simulated intestinal fluid-version 2 and fasted stated simulated colonic fluid).

7.
J Control Release ; 322: 227-235, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32112855

RESUMO

We have previously reported the synthesis of a poly(ethylene glycol)-haloperidol (PEG-haloperidol) conjugate that retained affinity for its target D2 receptor and was stable in simulated physiological conditions. We hypothesised that this polymer-drug conjugate would localise haloperidol's activity either centrally or peripherally, dependent on the location of administration, due to the polymer preventing penetration through the blood-brain barrier (BBB). Herein, we validate this hypothesis using in vitro and in vivo studies. We first demonstrate, via a [35S]GTPγS-binding assay, that drug activity is retained after conjugation to the polymer, supportive of retention of effective therapeutic ability. Specifically, the PEG-haloperidol conjugate (at 10 and 100 nM) was able to significantly inhibit dopamine-induced G-protein activation via D2 receptors, albeit with a loss of potency compared to the free haloperidol (~18-fold at 10 nM). This loss of potency was further probed and rationalised using molecular docking experiments, which indicated that conjugated haloperidol can still bind to the D2 receptors, albeit with a flipped orientation in the binding pocket within the receptor, which may explain the reduced activity. Finally, rat catalepsy studies confirmed the restricted permeation of the conjugate through the BBB in vivo. Rats treated intravenously with free haloperidol became cataleptic, whereas normal behaviour was observed in rats that received the PEG-haloperidol conjugate, suggesting that conjugation can effectively prevent unwanted central effects. Taken together these results demonstrate that conjugating small molecules to polymers is effective at prohibiting penetration of the drug through the BBB and is a valid targeting strategy for drugs to facilitate peripheral (or central) effects without inducing side effects in other compartments.


Assuntos
Catalepsia , Haloperidol , Animais , Barreira Hematoencefálica , Simulação de Acoplamento Molecular , Polietilenoglicóis , Ratos
8.
Int J Pharm ; 577: 119093, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004682

RESUMO

Gellan gum was chemically modified by the reaction with methacrylic anhydride to produce derivatives with 6, 14 and 49% methacrylation. The structure and substitution degrees of these derivatives were confirmed by 1H NMR- and FTIR-spectroscopy. These derivatives are more hydrophobic compared to pristine gellan and form turbid solutions in water. In vitro study performed with formulations of sodium fluorescein containing gellan gum and its methacrylated derivatives indicated that methacrylation enhances their retention on bovine conjunctival mucosa. In vivo experiments with the formulations of pilocarpine hydrochloride containing gellan gum and methacrylated derivatives have demonstrated that all polymers enhance the drug effect significantly, but best performance is observed for the polysaccharide with 6% methacrylation.


Assuntos
Túnica Conjuntiva/metabolismo , Mióticos/administração & dosagem , Pilocarpina/administração & dosagem , Polissacarídeos Bacterianos/química , Adesividade , Animais , Bovinos , Química Farmacêutica , Portadores de Fármacos/química , Feminino , Fluoresceína/química , Géis , Interações Hidrofóbicas e Hidrofílicas , Masculino , Metacrilatos/química , Metacrilatos/metabolismo , Mióticos/química , Mióticos/metabolismo , Mucosa/metabolismo , Pilocarpina/química , Coelhos
9.
Drug Dev Ind Pharm ; 35(12): 1439-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19929203

RESUMO

BACKGROUND: With a view to the application in oral colon drug delivery systems, swelling and release behavior of synthesized interpolyelectrolyte complexes (IPEC) between sodium alginate and Eudragit EPO were investigated. METHOD: The microenvironmental changes in IPECs structure as a function of pH during swellability testing were investigated using FT-IR spectroscopy and elementary analysis. RESULTS: All samples of IPECs (Z = 0.66-1.25) during swelling were transformed to a similar structure with approximately the same composition. The release of the model drug diclofenac sodium was significantly delayed from matrices made up of the IPECs and independent from the composition of polycomplexes. CONCLUSION: According to the obtained results, these IPECs can be considered to have potential in colonic drug delivery as combined pH- and time-dependent systems.


Assuntos
Alginatos/química , Colo/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Eletrólitos/química , Ácidos Polimetacrílicos/química , Diclofenaco/administração & dosagem , Diclofenaco/química , Portadores de Fármacos/síntese química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Modelos Biológicos , Conformação Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos , Fatores de Tempo , Água/análise
10.
Int J Pharm ; 558: 53-62, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634031

RESUMO

Carbopol® 971 and poly(2-ethyl-2-oxazoline) form hydrogen-bonded interpolymer complexes in aqueous solutions and their complexation is strongly dependent on solution pH. This work investigated the complexation between these polymers in aqueous solutions. The compositions of interpolymer complexes as well as the critical pH values of complexation were determined. The structure of these complexes was studied in solutions using transmission electron microscopy and in solid state using elemental analysis, FTIR spectroscopy and differential scanning calorimetry. Solid compacts were prepared based on interpolymer complexes and physical blends of these polymers and their swelling behaviour was studied in aqueous solutions mimicking the fluids present in the gastrointestinal tract. These materials were used to prepare oral formulations of mesalazine and its release from solid matrices was studied in vitro. It was demonstrated that the complexation between Carbopol® 971 and poly(2-ethyl-2-oxazoline) has a profound effect on the drug release from matrix tablets.


Assuntos
Resinas Acrílicas/química , Sistemas de Liberação de Medicamentos , Poliaminas/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Mesalamina/química , Comprimidos
11.
Int J Pharm ; 562: 241-248, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880105

RESUMO

Eudragit® E PO (EPO) is a terpolymer based on N,N-dimethylaminoethyl methacrylate with methylmethacrylate and butylmethacrylate, produced by Evonik Industries AG as a pharmaceutical excipient. In this work, EPO was chemically modified through reaction with acryloyl chloride. The successful modification of EPO was confirmed by FTIR, NMR-spectroscopy, elemental and thermal analysis. The degree of acrylation was determined by permanganatometric titration. The slug mucosal irritation test was used to demonstrate non-irritant nature of EPO and its acrylated derivatives (AEPO). The mucoadhesive properties of EPO and AEPO were evaluated using freshly excised sheep nasal mucosa and it was demonstrated that acrylated polymers facilitated greater retention of sodium fluorescein on mucosal surfaces compared to solution mixture of this dye solution with EPO as well as free dye.


Assuntos
Acrilatos/química , Excipientes/química , Mucosa/química , Ácidos Polimetacrílicos/química , Adesividade , Administração Intranasal , Animais , Excipientes/toxicidade , Gastrópodes , Mucosa/efeitos dos fármacos , Ácidos Polimetacrílicos/toxicidade , Ovinos
12.
Eur J Pharm Biopharm ; 70(1): 215-25, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18691856

RESUMO

With a view to the application in oral controlled drug delivery systems, the formation of interpolyelectrolyte complexes (IPEC) between chitosan (CS) and Eudragit L100 (L100) or Eudragit L100-55 (L100-55) was investigated at pH 6.0, using elementary analysis. The interaction or binding ratio of a unit molecule of CS with Eudragit L copolymers depends on the molecular weight of CS, and changes from 1:0.85 to 1:1.22 (1.17

Assuntos
Resinas Acrílicas/química , Anti-Inflamatórios não Esteroides/química , Quitosana/química , Diclofenaco/química , Portadores de Fármacos , Ácidos Polimetacrílicos/química , Administração Oral , Anti-Inflamatórios não Esteroides/administração & dosagem , Química Farmacêutica , Preparações de Ação Retardada , Diclofenaco/administração & dosagem , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Peso Molecular , Solubilidade , Comprimidos , Tecnologia Farmacêutica/métodos , Água/química
13.
Polymers (Basel) ; 10(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30966120

RESUMO

This work aimed to investigate the feasibility to design: (a) a mucoadhesive interpolyelectrolyte complex (IPEC) loaded with clobetasol propionate (CP) intended to treat oral lichen planus and (b) individuate an orodispersible dosage form suitable for its administration. IPECs were synthesized by mixing Eudragit® E PO (EPO) and different grades of cross-linked polyacrylate derivatives, in different molar ratios, namely 1:1, 1:2, and 2:1. All IPECs resulted at nanoscale independently of their composition (120⁻200 nm). Both zeta-potentials (ζ) and mucoadhesive performances were influenced by the ratio between polymers. On the bases of the preliminary data, IPECs made of Polycarbophil and EPO in the 1:2 ratio were loaded with CP. The encapsulation efficiency was up 88% independently of the CP-IPEC ratio. The drug encapsulation caused IPEC destabilization in water, as it was noticed by the increase of ζ values and the formation of aggregates. Oral lyophilisates were prepared by freeze-drying slurries made of placebo or CP loaded IPECs, maltodextrin with a dextrose equivalent 38 and Span®80. The optimized formulation permitted to obtain a fast disintegration upon contact with water reducing the tendency of IPECs to aggregate. Moreover, oral lyophilisates allowed improving the apparent solubility of CP throughout the in vitro release experiment.

14.
Eur J Pharm Sci ; 121: 16-28, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29777855

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable indomethacin delivery system, with a great potential in industrial manufacturing.


Assuntos
Anti-Inflamatórios não Esteroides/química , Quitosana/química , Colesterol/química , Sistemas de Liberação de Medicamentos , Indometacina/química , Nanopartículas/química , Fosfatidilcolinas/química , Adesividade , Liberação Controlada de Fármacos , Suco Gástrico/química , Secreções Intestinais/química , Lipossomos , Microfluídica , Mucinas/química
15.
RSC Adv ; 8(60): 34614-34624, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35548606

RESUMO

Liposomes constitute a class of prominent drug delivery systems due their cell-mimetic behaviour. Despite their high biocompatibility, biodegradability and low intrinsic toxicity, their poor stability in biological fluids as well as in stock conditions (high tendency to degrade or aggregate) have led to new approaches for liposome stabilization (e.g., surface covering with polymers). Here, liposomes were enwrapped by the natural biocompatible polymer chitosan to achieve stable shell-core nanostructures. Covered nanoliposomes were produced using an innovative continuous method based on microfluidic principles. The produced hybrid polymeric-lipid nanoparticles were characterized in terms of structural properties, size and stability. Moreover, phenomenological aspects in formation of nanoliposomal vesicles and chitosan layering, product quality (structure, size) and manufacturing yield related to this novel method were compared with those of the conventional dropwise method and the obtained products. The proposed simil-microfluidic method led to the production of stable and completely chitosan-covered liposomes with a shell-core nanostructure that avoided the disadvantages inherent in the conventional method (which are time-consuming and/or require bulky and more expensive equipment).

16.
Int J Pharm ; 518(1-2): 50-58, 2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28034735

RESUMO

In this study a protocol exploiting the combination of the ultrasonic atomization and the complexation between polyelectrolytes was developed to efficiently encapsulate a hydrophilic chemotherapeutic agent essentially used in the treatment of colon cancer, 5-fluorouracil, in enteric shell-core alginate-based microcarriers. The atomization assisted by ultrasound allowed to obtain small droplets by supplying low energy and avoiding drug degradation. In particular microcarriers were produced in a home-made apparatus where both the core (composed of alginate, drug, and Pluronic F127) and shell (composed of only alginate) feed were separately sent to the coaxial ultrasonic atomizer where they were nebulized and placed in contact with the complexation bulk. With the aim to obtain microstructured particles of alginate encapsulating 5-fluorouracil, different formulations of the first complexation bulk were tested; at last an emulsion made of a calcium chloride aqueous solution and dichloromethane allowed to reach an encapsulation efficiency of about 50%. This result can be considered very interesting considering that in literature similar techniques gave 5-fluorouracil encapsulation efficiencies of about 10%. Since a single complexation stage was not able to assure microcarriers gastroresistance, the formulation of a second complexation bulk was evaluated. The solution of cationic and pH-insoluble Eudragit® RS 100 in dichloromethane was chosen as bulk of second-stage complexation obtaining good enteric properties of shell-core microcarriers, i.e. a 5-FU cumulative release at pH 1 (simulating gastric pH) lower than 35%. The formation of interpolyelectrolyte complex (IPEC) between countercharged polymers and the chemical stability of 5-FU in microcarriers were confirmed by FTIR analysis, the presence of an amorphous dispersion of 5-FU in prepared microparticles was also confirmed by DSC. Finally, shell-core enteric coated microcarriers encapsulating 5-fluorouracil were used to prepare tablets, which can be potentially used as oral administration dosage systems for their 5-fluorouracil slower release.


Assuntos
Antimetabólitos Antineoplásicos/química , Portadores de Fármacos/química , Fluoruracila/química , Alginatos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Interações Hidrofóbicas e Hidrofílicas , Poloxâmero/química , Polieletrólitos/química , Ácidos Polimetacrílicos/química , Comprimidos
17.
Int J Pharm ; 524(1-2): 121-133, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28366803

RESUMO

Potential applications of a novel system composed of two oppositely-charged (meth)acrylate copolymers, Eudragit® ЕРО (EPO) and Eudragit® S100 (S100), loaded with indomethacin (IND) in oral drug delivery were evaluated. The particles based on drug-interpolyelectrolyte complexes (DIPEC), (EPO-IND)/S100, were prepared by mixing aqueous solutions of both copolymers at fixed pH. Particles of drug-polyelectrolyte complex (DPC), (EPO-IND) have a positive zeta potential, pointing to the surface location of free EPO chains and IND bound to EPO sequences. The formation and composition of both DPC and DIPEC were established by gravimetry, UV-spectrophotometry, capillary viscosity and elemental analysis. The structure and solid state properties of the formulated DIPEC were investigated using FTIR/NIR, Raman spectroscopy, XRPD and modulated DSC. DIPEC is a chemically homogenous material, characterized by a single Tg. DIPEC have an IR absorption band at 1560cm-1, which can be assigned to the stretching vibration of the carboxylate groups (S100, IND) that form ionic bonds with the dimethylamino groups of EPO. XRPD, NIR and Raman-shifts confirm that during the preparation of this formulation, IND is converted into its amorphous form. The release of IND from DPC EPO/IND (3:1) and DIPEC EPO/L100/IND (4.5:1:1) is sustained and is completed within 7h under GIT mimicking conditions. However, S100 within DIPEC makes the release process slower making this system suitable for colon-specific delivery. Finally, DPC and DIPEC with indomethacin were used to prepare tablets, which can be potentially used as oral dosage forms for their slower indomethacin release in case of DIPEC which could be suitable for sustained delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Indometacina/química , Ácidos Polimetacrílicos/química , Concentração de Íons de Hidrogênio , Solubilidade
18.
Eur J Pharm Biopharm ; 63(1): 26-36, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16380241

RESUMO

The formation of interpolyelectrolyte complexes (IPEC) between Eudragit E PO (EE) and Eudragit L 100-55 (EL) was investigated, using turbidimetry, apparent viscosity measurements, elementary analysis and MT-DSC. The structure of the synthesized IPEC was investigated using FT-IR spectroscopy. The binding ratio of a unit molecule of EL with EE was found to be approximately 1:1 at pH 5.5. Based on the results of elementary analysis and FT-IR, the binding ratio of each component in the solid complexes was very close to that observed in turbidity and apparent viscosity measurements and indicate that the synthesized products can be considered as IPEC. As a result of electrostatic interaction between the polymer chains, the glass transition temperature of the IPEC increased significantly. Due to the structure of the IPEC, two maxima were observed in the swelling behavior as a function of pH. The release of the model drug ibuprofen (IBF) was significantly retarded from tablets made up of the IPEC as compared with individual copolymers, its physical mixture and Eudragit RL PO (RL), RS PO (RS).


Assuntos
Resinas Acrílicas/química , Portadores de Fármacos/química , Ibuprofeno/química , Ácidos Polimetacrílicos/química , Preparações de Ação Retardada , Portadores de Fármacos/síntese química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos , Temperatura de Transição , Viscosidade , Água/química
19.
Int J Pharm ; 439(1-2): 17-21, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041129

RESUMO

Interpolymer interactions between the countercharged methacrylate copolymers Eudragit(®) RL 30D (polycation) and Eudragit(®) FS 30D (polyanion), were investigated in conditions mimicking the gastrointestinal environment. The formation of inter-macromolecular ionic bonds between Eudragit(®) RL 30D and Eudragit(®) FS 30D was investigated using FT-IR spectroscopy and modulated DSC. The FT-IR spectra of the tested polymeric matrices are characterized by visible changes in the observed IR region indicating the interaction between chains of two oppositely charged copolymers. A new band at 1570 cm(-1) appeared which was assigned to the absorption of the carboxylate groups that form the ionic bonds with the quaternary ammonium groups. Moreover, while increasing the pH values from pH 5.8 to 7.4, a decrease of the intensity of the band at 960 cm(-1) (quaternary ammonium group vibration) was observed. All binary mixtures were characterized by the presence of only one and narrow Tg, pointing to sample homogeneity, because of the compatibility of components. As a result of electrostatic interaction between the copolymer chains during swelling, the resulting Tg is decreased significantly and was dependent on the quantity of copolymers present in the structure of polycomplexes formed. Overall, the interaction between countercharged copolymers during passage in gastrointestinal tract can strongly modify the release profile of the model drug diclofenac sodium.


Assuntos
Diclofenaco/química , Ácidos Polimetacrílicos/química , Anti-Inflamatórios não Esteroides/química , Varredura Diferencial de Calorimetria , Suco Gástrico/química , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Pharm Sci ; 100(3): 874-85, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20803617

RESUMO

With a view to the application in oral controlled drug delivery systems (DDS), the design of new interpolyelectrolyte complexes (IPECs) between countercharged types of Eudragit EPO (EPO) and Eudragit L 100-55 (L100-55) was investigated. The formation and composition of four new IPECs between EPO and L100-55 were established by elementary analysis. The structure of the synthesized IPEC was investigated using FTIR spectroscopy and modulated-temperature differential scanning calorimetry. The binding ratio of a unit molecule of EPO with L100-55 was found to range between 1:2.75 (Z = 0.36) and 1:0.55 (Z = 1.81) while increasing the pH value from 5.5 to 7.0. As a result of electrostatic interaction between the copolymer chains, the glass transition temperature of the IPEC increased significantly. A large pH-sensitive swelling behavior was observed for different structures of the IPECs. The outcome of swelling and diclofenac sodium release from the polycomplex matrices confirm that they have great potential to be used as a controlled DDS in specified regions of gastrointestinal tract.


Assuntos
Resinas Acrílicas/química , Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Sistemas de Liberação de Medicamentos , Ácidos Polimetacrílicos/química , Administração Oral , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/metabolismo , Preparações de Ação Retardada , Diclofenaco/administração & dosagem , Diclofenaco/metabolismo , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Polímeros/química , Solubilidade , Eletricidade Estática , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA