Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Inflamm Res ; 3: 9-16, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22096353

RESUMO

Certain skin pathologies, including psoriasis, are thought to be immune-mediated inflammatory diseases. Available literature clearly indicates the involvement of inflammatory cells (neutrophils, T cells, and macrophages), their cytokines, and the p38 mitogen-activated protein kinase (MAPK) signaling pathway in the pathophysiology of psoriasis. Neutrophils play an important role in the formation of acute inflammatory changes in psoriasis. Acute inflammation or acute flares in psoriasis remain poorly addressed in clinical medicine. In this communication, we first establish a simple and reproducible model for studying neutrophil-mediated acute skin inflammation. Using the hairless guinea pig, due to the similarity of skin architecture to that of human, acute inflammation was induced with an intradermal injection of 50 µg/mL lipopolysaccharide (LPS) in 50 µL solution. Myeloperoxidase (MPO) activity was measured by MPO-positive neutrophils and shown to increase for 24-hours post-injection. Simultaneously, the level of phosphorylated p38 MAPK was documented for 48-hours post-LPS injection in the skin. Next, we used this model to examine the therapeutic potential of an α-selective p38 MAPK inhibitor, SCIO-469. A comparison of topical application of SCIO-469 at 5 mg/mL or 15 mg/mL to vehicle revealed that SCIO-469 dose-dependently reduces acute skin inflammation and that this effect is statistically significant at the higher dose. Further examination of tissues that received this dose also revealed statistically significant reduction of MPO activity, phosphorylated p38 MAPK, interleukin-6, and cyclooxygenase-2. These data suggest that the α-selective p38 MAPK inhibitor, SCIO-469, acts as a topical anti-inflammatory agent via the p38 MAPK pathway to reduce neutrophil induced acute inflammation in the skin. These observations suggest that α-selective p38 MAPK inhibition may be an effective therapeutic strategy to manage acute skin inflammation.

2.
J Pharmacol Exp Ther ; 318(1): 99-107, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16603672

RESUMO

Mitogen-activated protein kinases (MAPKs) and heat shock proteins (HSPs) are ubiquitous proteins that function within T cells in both normal and stress-related pathophysiological states, including type 1 diabetes. The nonobese diabetic (NOD) mouse spontaneously develops T cell-mediated autoimmune pancreatic beta cell destruction that is similar to type 1 diabetes in humans. Because p38 MAPKs have been shown to modulate T cell function, we studied the effects of a p38alpha MAPK-selective inhibitor, indole-5-carboxamide (SD-169), on the development and progression of type 1 diabetes in the NOD mouse. In preventive treatment studies, SD-169 significantly reduced p38 and HSP60 expression in T cells of the pancreatic beta islets. Following treatment, the incidence of diabetes as determined by blood glucose levels was significantly lower, and immuno-histochemistry of pancreatic beta islet tissue demonstrated significant reduction in CD5+ T cell infiltration in the SD-169 treatment group as compared with untreated NOD mice. In therapeutic studies using mildly and moderately hyperglycemic NOD mice, SD-169 treatment lowered blood glucose and improved glucose homeostasis. Furthermore, following cessation of SD-169 treatment, NOD mice showed significant arrest of diabetes. In conclusion, we report that this p38alpha-selective inhibitor prevents the development and progression of diabetes in NOD mice by inhibiting T cell infiltration and activation, thereby preserving beta cell mass via inhibition of the p38 MAPK signaling pathway. These results have bearing on current prophylactic and therapeutic protocols using p38alpha-selective inhibitors in the prediabetic period for children at high risk of type 1 diabetes, in the honeymoon period, and for adults with latent autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/prevenção & controle , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Camundongos , Camundongos Endogâmicos NOD , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA