Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 86: 1-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25743182

RESUMO

Ichthyophthirius multifiliis is the etiologic agent of "white spot", a commercially important disease of freshwater fish. As a parasitic ciliate, I. multifiliis infects numerous host species across a broad geographic range. Although Ichthyophthirius outbreaks are difficult to control, recent sequencing of the I. multifiliis genome has revealed a number of potential metabolic pathways for therapeutic intervention, along with likely vaccine targets for disease prevention. Nonetheless, major gaps exist in our understanding of both the life cycle and population structure of I. multifiliis in the wild. For example, conjugation has never been described in this species, and it is unclear whether I. multifiliis undergoes sexual reproduction, despite the presence of a germline micronucleus. In addition, no good methods exist to distinguish strains, leaving phylogenetic relationships between geographic isolates completely unresolved. Here, we compared nucleotide sequences of SSUrDNA, mitochondrial NADH dehydrogenase subunit I and cox-1 genes, and 14 somatic SNP sites from nine I. multifiliis isolates obtained from four different states in the US since 1995. The mitochondrial sequences effectively distinguished the isolates from one another and divided them into at least two genetically distinct groups. Furthermore, none of the nine isolates shared the same composition of the 14 somatic SNP sites, suggesting that I. multifiliis undergoes sexual reproduction at some point in its life cycle. Finally, compared to the well-studied free-living ciliates Tetrahymena thermophila and Paramecium tetraurelia, I. multifiliis has lost 38% and 29%, respectively, of 16 experimentally confirmed conjugation-related genes, indicating that mechanistic differences in sexual reproduction are likely to exist between I. multifiliis and other ciliate species.


Assuntos
Peixes/parasitologia , Hymenostomatida/classificação , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Hymenostomatida/genética , Funções Verossimilhança , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Reprodução/genética , Análise de Sequência de DNA , Estados Unidos
2.
Biosens Bioelectron ; 142: 111515, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325673

RESUMO

Separation and detection of hemoglobin (Hb) and glycated hemoglobin fractions (HbA1c, HbAld1+2, HbAle, HbAld3a, HbAla+b, HbA2, and HbAld3b) was performed using an electrochemical AC field modulated separation channel (EMSC) coupled with a sensor probe. The sensor was fabricated based on immobilization of a redox mediator on the poly(2,2':5',5″-terthiophene-3'-p-benzoic acid, pTTBA) and N,S-doped porous carbon (NSPC) nanocomposite. The different types of catalytic redox mediators such as Nile Blue (NB), toluidine blue O (TBO), and Neutral Red (NR) were evaluated to achieve the efficient detection. Of these, the NB-based sensor showed the best analytical signal for Hb and HbA1c, thus it was characterized using various electrochemical and surface analysis methods. After that, the sensor was coupled with the EMSC to achieve the separation detection of the Hb family. The frequency and amplitude of the AC electrical field applied onto the EMSC walls were the main driving forces for the separation and sensitive detection of the analytes. Under optimized conditions, linear dynamic ranges for Hb and HbA1c among their fractions were obtained between 1.0 × 10-6 to 3.5 mM and 3.0 × 10-6 to 0.6 mM with the detection limit of 8.1 × 10-7 ± 3.0 × 10-8 and 9.2 × 10-7 ± 5 × 10-8 mM, respectively. Interference effects of other biomolecules were also investigated and the clinical applicability of the device was evaluated by the determination of total Hb and % HbA1c in real human blood samples.


Assuntos
Técnicas Biossensoriais/instrumentação , Hemoglobinas Glicadas/análise , Hemoglobinas/análise , Técnicas Analíticas Microfluídicas/instrumentação , Condutividade Elétrica , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Hemoglobinas Glicadas/isolamento & purificação , Hemoglobinas/isolamento & purificação , Humanos , Limite de Detecção , Modelos Moleculares , Polímeros/química
3.
Mol Biochem Parasitol ; 178(1-2): 29-39, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21524669

RESUMO

The parasitic ciliate, Ichthyophthirius multifiliis (Ich), is among the most important protozoan pathogens of freshwater fish. Ichthyophthirius cannot be grown in cell culture, and the development of effective prophylactic and therapeutic treatments has been hampered by a lack of information regarding genes involved in virulence, differentiation and growth. To help address this issue, we have generated EST libraries from the two major stages of the parasite life cycle that infect and develop within host tissues. A total of 25,084 ESTs were generated from non-normalized libraries prepared from polyA+ RNA of infective theronts and host-associated trophonts, respectively. Cluster analysis identified 5311 unique transcripts (UniScripts), of which 2091 were contigs and 3220 singletons. Extrapolation of the data based on rates of EST discovery suggests that more than half the expected protein-coding genes of I. multifiliis are represented in this data. BLASTX comparisons against GenBank nr, UniProtKB (SwissProt and TrEMBL), as well as Tetrahymena thermophila, Plasmodium falciparum, and Paramecium tetraurelia protein databases produced 3694 significant (E-value ≤1e(-10)) hits, of which 1178 were annotated using gene ontology (GO) analysis. A high proportion of UniScripts (63%) showed similarity to other ciliate proteins. When combined with expression profiling data, GO ontology analysis of Biological Process, Cellular Component, and Molecular Function revealed interesting differences in gene families expressed in the two stages. Indeed, the most abundant transcripts were highly stage-specific and coincided with the metabolic activities associated with each stage. This work provides an effective genomics resource to further our understanding of Ichthyophthirius biology, and lays the groundwork for the identification of potential drug targets and vaccines candidates for the control of this devastating fish pathogen.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Hymenostomatida/genética , Animais , Análise por Conglomerados , Hymenostomatida/isolamento & purificação , Ictaluridae/parasitologia , RNA de Protozoário/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA