Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15080, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956280

RESUMO

Plyometric training is characterized by high-intensity exercise which is performed in short term efforts divided into sets. The purpose of the present study was twofold: first, to investigate the effects of three distinct plyometric exercise protocols, each with varying work-to-rest ratios, on muscle fatigue and recovery using an incline-plane training machine; and second, to assess the relationship between changes in lower limb muscle strength and power and the biochemical response to the three exercise variants employed. Forty-five adult males were randomly divided into 3 groups (n = 15) performing an exercise of 60 rebounds on an incline-plane training machine. The G0 group performed continuous exercise, while the G45 and G90 groups completed 4 sets of 15 repetitions, each set lasting 45 s with 45 s rest in G45 (work-to-rest ratio of 1:1) and 90 s rest in G90 (1:2 ratio). Changes in muscle torques of knee extensors and flexors, as well as blood lactate (LA) and ammonia levels, were assessed before and every 5 min for 30 min after completing the workout. The results showed significantly higher (p < 0.001) average power across all jumps generated during intermittent compared to continuous exercise. The greatest decrease in knee extensor strength immediately post-exercise was recorded in group G0 and the least in G90. The post-exercise time course of LA changes followed a similar pattern in all groups, while the longer the interval between sets, the faster LA returned to baseline. Intermittent exercise had a more favourable effect on muscle energy metabolism and recovery than continuous exercise, and the work-to-rest ratio of 1:2 in plyometric exercises was sufficient rest time to allow the continuation of exercise in subsequent sets at similar intensity.


Assuntos
Fadiga Muscular , Força Muscular , Exercício Pliométrico , Descanso , Humanos , Masculino , Descanso/fisiologia , Fadiga Muscular/fisiologia , Adulto , Força Muscular/fisiologia , Exercício Pliométrico/métodos , Adulto Jovem , Músculo Esquelético/fisiologia , Ácido Láctico/sangue , Amônia/sangue , Exercício Físico/fisiologia
2.
J Hum Kinet ; 91(Spec Issue): 165-174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38689580

RESUMO

400-m races are based on anaerobic energy metabolism, they induce significant muscle fatigue, muscle fiber damage, and high blood lactate (LA) concentration. Despite extensive research on sprint training, our understanding of the training process that leads to world-class sprint performance is rather limited. This study aimed to determine differences in LA concentration and anaerobic power using jumping tests after an intense glycolytic effort in a group of elite and sub-elite 400-m runners. One hundred thirty male runners were divided into two groups: elite (n = 66, body mass = 73.4 ± 7.8 kg, body height = 182.1 ± 6.2 cm, age = 20.8 ± 4.0 y) running the 400-m dash below 50 s and sub-elite (n = 64, body mass = 72.0 ± 7.1 kg, body height = 182.1 ± 5.2 cm, age = 20.8 ± 4.0 y) with a 400-m personal best above 50 s. The power of the countermovement and the sequential squat jumps was measured in two sets after a warm-up, followed by two intermittent 30-s Wingate tests. LA concentration was measured eight times. It was observed that elite athletes achieved significantly higher power in both types of jumps. The maximum post-exercise LA concentration was significantly lower in the sub-elite group after the 3rd, the 6th, the 9th, and the 20th min after the cessation of two Wingate tests (p < 0.001). The rate of LA accumulation after exercise and the rate of LA utilization did not differ between the groups. It can be concluded that elite and non-elite runners differ in higher LA production but not in LA utilization. Anaerobic power and LA concentration seem to differentiate between 400 elite and sub-elite performance.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38965080

RESUMO

Aclarubicin (aclacinomycin A) is one of the anthracycline antineoplastic antibiotics with a multifaceted mechanism of antitumor activity. As a second-generation drug, it offers several advantages compared to standard anthracycline drugs such as doxorubicin or daunorubicin, which could position it as a potential blockbuster drug in antitumor therapy. Key mechanisms of action for aclarubicin include the inhibition of both types of topoisomerases, suppression of tumor invasion processes, generation of reactive oxygen species, inhibition of chymotrypsin-like activity, influence on cisplatin degradation, and inhibition of angiogenesis. Therefore, aclarubicin appears to be an ideal candidate for antitumor therapy. However, despite initial interest in its clinical applications, only a limited number of high-quality trials have been conducted thus far. Aclarubicin has primarily been evaluated as an induction therapy in acute myeloid and lymphoblastic leukemia. Studies have indicated that aclarubicin may hold significant promise for combination therapies with other anticancer drugs, although further research is needed to confirm its potential. This paper provides an in-depth exploration of aclarubicin's diverse mechanisms of action, its pharmacokinetics, potential toxicity, and the clinical trials in which it has been investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA