Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Immunol ; 205(11): 3191-3204, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148717

RESUMO

IL-10 is a potent anti-inflammatory cytokine capable of suppressing a number of proinflammatory signals associated with intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease. Clinical use of human IL-10 (hIL-10) has been limited by anemia and thrombocytopenia following systemic injection, side effects that might be eliminated by a gut-restricted distribution. We have identified a transcytosis pathway used by cholix, an exotoxin secreted by nonpandemic forms of the intestinal pathogen Vibrio cholerae A nontoxic fragment of the first 386 aa of cholix was genetically fused to hIL-10 to produce recombinant AMT-101. In vitro and in vivo characterization of AMT-101 showed it to efficiently cross healthy human intestinal epithelium (SMI-100) by a vesicular transcytosis process, activate hIL-10 receptors in an engineered U2OS osteosarcoma cell line, and increase cellular phospho-STAT3 levels in J774.2 mouse macrophage cells. AMT-101 was taken up by inflamed intestinal mucosa and activated pSTAT3 in the lamina propria with limited systemic distribution. AMT-101 administered to healthy mice by oral gavage or to cynomolgus monkeys (nonhuman primates) by colonic spray increased circulating levels of IL-1R antagonist (IL-1Ra). Oral gavage of AMT-101 in two mouse models of induced colitis prevented associated pathological events and plasma cytokine changes. Overall, these studies suggest that AMT-101 can efficiently overcome the epithelial barrier to focus biologically active IL-10 to the intestinal lamina propria.


Assuntos
Colite/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Animais , Células Cultivadas , Colo/metabolismo , Doença de Crohn/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Mucosa/metabolismo , Ratos , Ratos Wistar , Transcitose/fisiologia
2.
Pharm Res ; 34(6): 1149-1151, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386634

RESUMO

A growing share of the pharmaceutical development pipeline is occupied by macromolecule drugs, which are primarily administered by injection. Despite decades of attempts, non-invasive delivery of macromolecules has seen only a few success stories. Potential benefits of non-invasive administration include better patient acceptance and adherence and potentially better efficacy and safety. Greater inter-disciplinary dialogue and collaboration are integral to realizing these benefits.


Assuntos
Substâncias Macromoleculares/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Substâncias Macromoleculares/química , Permeabilidade , Preparações Farmacêuticas/química
3.
J Cell Biochem ; 117(3): 589-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26312781

RESUMO

Transplantation of hepatocytes is a promising therapy for end-stage liver disease, but the availability of functional cells currently precludes its clinical application. We now report a simple transient reprogramming approach to convert fibroblasts into hepatic-like cells. Human skin fibroblasts were treated with fish egg extracts to become the transiently remodeled cells (TRCs). After infected with retroviral EGFP, they were directly injected into the fetal monkey liver, where they underwent in situ differentiation in the hepatic niche. The hepatic-like cells were functional as shown by the synthesis of hepatic markers in vivo, including albumin, cytokeratin-18, and hepatic serum antigen. Similarly, when implanted in the mouse liver, the TRCs were differentiated into hepatic-like cells that synthesize albumin and CK18 and became completely integrated into the liver parenchyma. The potency of TRCs was mechanistically related to the activation of several signal pathways, which reactivate endogenous genes related to cell potency. This study demonstrates the feasibility of a simple and inexpensive epigenetic remodeling approach to convert human fibroblasts into therapeutic hepatic-like cells for the treatment of end-stage liver disease.


Assuntos
Fibroblastos/fisiologia , Animais , Células Cultivadas , Reprogramação Celular , Feminino , Fibroblastos/transplante , Hepatócitos/metabolismo , Humanos , Queratina-18/metabolismo , Fígado/citologia , Regeneração Hepática , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Transdução de Sinais , Pele/citologia
4.
Cytotherapy ; 17(4): 403-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25618561

RESUMO

BACKGROUND AIMS: Acute radiation syndrome (ARS) leads to pancytopenia and multi-organ failure. Transplantation of hematopoietic stem cells provides a curative option for radiation-induced aplasia, but this therapy is limited by donor availability. METHODS: We examined an alternative therapeutic approach to ARS with the use of human extracellular superoxide dismutase (ECSOD)-modified umbilical cord mesenchymal stromal cells (UCMSCs). This treatment combines the unique regenerative role of UCMSCs with the anti-oxidative activity of ECSOD. RESULTS: We demonstrated that systemically administered ECSOD-UCMSCs are able to protect mice from sub-lethal doses of radiation and improve survival by promoting multilineage hematopoietic recovery. The therapeutic effect of this treatment is related to the decrease in radiation-induced O(2)(-) and apoptosis. CONCLUSIONS: Our data highlight the clinical potential of this two-pronged approach to the treatment of ARS, thereby serving as a rapid and effective first-line strategy to combat the hematopoietic failure resulting from a radiation accident, nuclear terrorism and other radiologic emergencies.


Assuntos
Síndrome Aguda da Radiação/terapia , Hematopoese , Transplante de Células-Tronco Mesenquimais/métodos , Protetores contra Radiação/uso terapêutico , Superóxido Dismutase/metabolismo , Animais , Apoptose , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Cordão Umbilical/citologia
5.
Cell Microbiol ; 16(9): 1339-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24617613

RESUMO

Neutrophil (polymorphonuclear leucocytes; PMN) transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Using Salmonella enterica serovar Typhimurium (S. Typhimurium) as a prototypic proinflammatory insult, we have previously reported that the eicosanoid hepoxilin A3 (HXA3 ), an endogenous product of 12-lipoxygenase (12-LOX) activity, is secreted from the apical surface of the intestinal epithelium to establish a chemotactic gradient that guides PMN across the epithelial surface. Since little is known regarding the molecular mechanisms that regulate 12-LOX during S. Typhimurium infection, we investigated this pathway. We found that expression of phospholipid glutathione peroxidase (GPX4), which is known to have an inhibitory effect on 12-LOX activity, is significantly decreased at both the mRNA and protein level during infection with S. Typhimurium. Moreover, employing intestinal epithelial cell monolayers expressing siRNA against GPX4 mRNA, S. Typhimurium-induced PMN migration was significantly increased compared with the non-specific siRNA control cells. Conversely, in cells engineered to overexpress GPX4, S. Typhimurium-induced PMN migration was significantly decreased, which is consistent with the finding that partial depletion of GPX4 by RNAi resulted in a significant increase in HXA3 secretion during S. Typhimurium infection. Mechanistically, although we found Salmonella entry not to be required for the induced decrease in GPX4, the secreted effector, SipA, which is known to induce epithelial responses leading to stimulation of HXA3 , governed the decrease in GPX4 in a process that does not lead to an overall increase in the levels of ROS. Taken together, these results suggest that S. Typhimurium induces apical secretion of HXA3 by decreasing the expression of phospholipid GPX, which in turn leads to an increase in 12-LOX activity, and hence HXA3 synthesis.


Assuntos
Glutationa Peroxidase/metabolismo , Mucosa Intestinal/enzimologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Salmonella typhimurium/fisiologia , Western Blotting , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Mucosa Intestinal/citologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/fisiologia
6.
Cytotherapy ; 16(9): 1207-19, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108650

RESUMO

BACKGROUND AIMS: Acute liver failure (ALF), a life-threatening disease characterized by the sudden loss of hepatic function, can occur after an accidental or intentional acetaminophen overdose. METHODS: With the use of an ALF mouse model, we examined both the preventive and therapeutic potential of intravenously administered human umbilical cord-derived mesenchymal stromal cells (hUCMSCs). Primary hUCMSCs were purified from freshly collected full-term umbilical cords and intravenously transplanted into BALB/c mice either before and after ALF induced by acetaminophen intoxication. We found that hUCMSCs significantly improved survival rates and relative liver weight of mice in both pre-ALF and post-ALF animals. Correspondingly, serum levels of markers that reflect hepatic injury (ie, aspartate aminotransferase, alanine aminotransferase and total bilirubin) were significantly attenuated in the group receiving hUCMSC therapy. RESULTS: Mechanistically, we found that the protective potential of intravenously administered hUCMSCs was mediated by paracrine pathways that involved antioxidants (glutathione, superoxide dismutase), the reduction of inflammatory agents (tumor necrosis factor-α, interleukin-6) and elevated serum levels of hepatocyte growth factor. CONCLUSIONS: Through these paracrine effects, intravenously administered hUCMSCs reduced hepatic necrosis/apoptosis and enhanced liver regeneration. Thus, our data demonstrate that intravenously administered hUCMSCs may be useful in the prevention or treatment of acetaminophen-induced ALF.


Assuntos
Acetaminofen/toxicidade , Falência Hepática Aguda/terapia , Fígado/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Acetaminofen/administração & dosagem , Administração Intravenosa , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Masculino , Camundongos Endogâmicos BALB C , Cordão Umbilical/citologia
7.
Expert Opin Drug Deliv ; : 1-19, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39126130

RESUMO

INTRODUCTION: Intramuscular (IM) injections deliver a plethora of drugs. The majority of IM-related literature details dissolution and/or pharmacokinetic (PK) studies, using methods with limited assessments of post-injection events that can impact drug fate, and absorption parameters. Food and Drug Association guidelines no longer require preclinical in vivo modeling in the U.S.A. Preclinical animal models fail to correlate with clinical outcomes, highlighting the need to study, and understand, IM drug fate in vitro using bespoke models emulating human IM sites. Post-IM injection events, i.e. underlying processes that influence PK outcomes, remain unacknowledged, complicating the application of in vitro methods in preclinical drug development. Understanding such events could guide approaches to predict and modulate IM drug fate in humans. AREAS COVERED: This article reviews challenges in biorelevant IM site modeling (i.e. modeling drug fate outcomes), the value of technologies available for developing IM injectables, methods for studying drug fate, and technologies for training in performing IM administrations. PubMed, Web-of-Science, and Lens databases provided papers published between 2014 and 2024. EXPERT OPINION: IM drug research is expanding what injectable therapeutics can achieve. However, post-injection events that influence PK outcomes remain poorly understood. Until addressed, advances in IM drug development will not realize their full potential.

8.
Eur J Pharm Biopharm ; 199: 114308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688439

RESUMO

We have previously developed an in vitro instrument, termed subcutaneous injection site simulator (SCISSOR), that can be used to monitor release properties of an active pharmaceutical ingredient (API) and formulation components of a medicine designed for SC injection. Initial studies to validate the SCISSOR instrument applications used a simple hyaluronic acid (HA) hydrogel to monitor early release events. We now report a type of cross-linked HA that can, when combined with HA, provide a hydrogel (HA-XR) with optical clarity and rheological properties that remain stable for at least 6 days. Incorporation of 0.05-0.1 mg/mL of collagens isolated from human fibroblasts (Col F), bovine type I collagen (Col I), chicken collagen type II (Col II), or chondroitin sulphate (CS) produced HA or HA-XR hydrogel formats with optical clarity and rheological properties comparable to HA or HA-XR alone. HA + Col F hydrogel had a much greater effect on release rates of 70 kDa compared to 4 kDa dextran, while Col F incorporated into the HA-XR hydrogel accentuated differences in release rates of prandial and basal forms of insulin as well as decreased the release rate of denosumab. A hydrogel format of HA + Col I was used to examine the complex events for bevacizumab release under conditions where a target ligand (vascular endothelial growth factor) can interact with extracellular matrix (ECM). Together, these data have demonstrated the feasibility of using a cross-linked HA format to examine API release over multiple days and incorporation of specific ECM elements to prepare more biomimetic hydrogels that allow for tractable examination of their potential impact of API release.


Assuntos
Ácido Hialurônico , Hidrogéis , Injeções Subcutâneas , Ácido Hialurônico/química , Hidrogéis/química , Humanos , Animais , Interações Medicamentosas/fisiologia , Bovinos , Reologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/administração & dosagem , Insulina/administração & dosagem , Insulina/química , Bevacizumab/administração & dosagem , Bevacizumab/química , Colágeno/química
9.
Tissue Barriers ; 11(1): 2039003, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262466

RESUMO

Cholix (Chx) is secreted by non-pandemic strains of Vibrio cholerae in the intestinal lumen. For this exotoxin to induce cell death in non-polarized cells in the intestinal lamina propria, it must traverse the epithelium in the fully intact form. We identified host cell elements in polarized enterocytes associated with Chx endocytosis and apical to basal (A→B) vesicular transcytosis. This pathway overcomes endogenous mechanisms of apical vesicle recycling and lysosomal targeting by interacting with several host cell proteins that include the 75 kDa glucose-regulated protein (GRP75). Apical endocytosis of Chx appears to involve the single membrane spanning protein TMEM132A, and interaction with furin before it engages GRP75 in apical vesicular structures. Sorting within these apical vesicles results in Chx being trafficked to the basal region of cells in association with the Lectin, Mannose Binding 1 protein LMAN1. In this location, Chx interacts with the basement membrane-specific heparan sulfate proteoglycan perlecan in recycling endosomes prior to its release from this basal vesicular compartment to enter the underlying lamina propria. While the furin and LMAN1 elements of this Chx transcytosis pathway undergo cellular redistribution that are reflective of the polarity shifts noted for coatamer complexes COPI and COPII, GRP75 and perlecan fail to show these dramatic rearrangements. Together, these data define essential steps in the A→B transcytosis pathway accessed by Chx to reach the intestinal lamina propria where it can engage and intoxicate certain non-polarized cells.


The Vibrio cholerae exotoxin protein cholix interacts with a number of host cell proteins, including GRP75, to facilitate its vesicular transcytosis across polarized intestinal epithelial cells following apical endocytosis.


Assuntos
Furina , Transcitose , Endocitose , Proteínas de Membrana
10.
AAPS J ; 24(6): 104, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195806

RESUMO

Mankind has recently had to deal a series of virus-mediated pandemics, resulting in extensive morbidity and mortality rates that have severely strained healthcare systems. While dealing with viral infections as a healthcare concern is not new, our exceptionally mobile society has added to the critical challenge of limiting pathogen spread of a highly transmissible virus prior to the generation, testing, and distribution of safe and effective vaccines. The tremendous global effort put forth to address the recent pandemic induced by SARS-CoV-2 infection has highlighted many of the strengths and weaknesses of how vaccines are identified, tested, and used to provide protection. These uncertainties are exacerbated by the lack of clear and consistent messaging that can occur when the processes of research, development, and clinical testing that normally requires years of study and consideration are compressed into a few months. In this commentary, I will provide some background on the intramuscular (IM), subcutaneous (SC), and intradermal (ID) administration routes used for injectable vaccines and some information on potential immunological outcomes. With this background, I will address the recent FDA decision to allow an approved vaccine against monkeypox virus to be administered by ID, as well as its initial approval route via SC, injection as a dose-sparing strategy to maximize immunization numbers using current stockpiles.


Assuntos
COVID-19 , Mpox , COVID-19/prevenção & controle , Humanos , Injeções Intramusculares , SARS-CoV-2 , Vacinação/métodos
11.
Int J Pharm X ; 4: 100125, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065415

RESUMO

Parenteral administrations are a mainstay of clinical drug delivery. Intramuscular (IM) injections deposit drug directly into skeletal muscle bellies, providing rapid systemic uptake due to the highly vascularized nature of this site. The potential to inject particulate or non-aqueous materials have also made IM injections useful for long-acting formulations. These attributes have supported a plethora of medicines being approved for IM administration. Despite these many approvals across multiple pharmaceutical categories, mechanisms that control drug release from the injection site, and thus its pharmacokinetic properties, remain poorly understood. Several pre-clinical in vivo animals have been used to model IM drug fate in patients, but these approaches have not consistently predicted clinical outcomes. This lack of a predictive in vivo model and no standardized in vitro tools have limited the options of pharmaceutical scientists to rationally design formulations for IM delivery. Here, we describe a novel, tractable in vitro model informed by dominant extracellular matrix (ECM) components present at the IM injection site. Three charge variants of green florescent protein (GFP) and the impact of three common formulation components were examined in an initial test of this in vitro model. A strongly positively charged GFP was restricted in its release from hydrogels composed of ECM components type I collagen and hyaluronic acid compared to standard and strongly negatively charged GFP. Introduction of commonly used buffers (histidine or acetate) or the non-ionic surfactant polysorbate 20 altered the release properties of these GFP variants in a manner that was dependent upon ECM element composition. In sum, this Simulator of IntraMuscular Injections, termed SIMI, demonstrated distinct release profiles of a protein biopharmaceutical surrogate that could be exploited to interrogate the impact of formulation components to expedite novel drug development and reduce current dependence on potentially non-predictive pre-clinical in vivo models.

12.
Pharmaceutics ; 13(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371698

RESUMO

Due to a lack of safe and effective oral delivery strategies for most protein and peptide therapeutics, pharmaceutical drug developers have focused on parenteral routes to administer these agents. Recent advances in delivery technologies have now shown clinical validation for a few of these biopharmaceuticals following oral administration. While these initial opportunities have provided more than just a glimmer of hope within the industry, there are important aspects of oral biopharmaceutical delivery that do not completely align with pharmacokinetic (PK) parameters and pharmacodynamics (PD) outcomes that have been learned from parenteral administrations. This commentary examines some of these issues with the goal of presenting a rationale for re-assessing methods, models, and success criteria to better measure oral protein or peptide delivery outcomes related to PK/PD events.

13.
J Control Release ; 336: 322-335, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34153375

RESUMO

Intramuscular (IM) injections are a well-established method of delivering a variety of therapeutics formulated for parenteral administration. While the wide range of commercial IM pharmaceuticals provide a wealth of pharmacokinetic (PK) information following injection, there remains an inadequate understanding of drug fate at the IM injection site that could dictate these PK outcomes. An improved understanding of injection site events could improve approaches taken by formulation scientists to identify therapeutically effective and consistent drug PK outcomes. Interplay between the typically non-physiological aspects of drug formulations and the homeostatic IM environment may provide insights into the fate of drugs at the IM injection site, leading to predictions of how a drug will behave post-injection in vivo. Immune responses occur by design after e.g. vaccine administration, however immune responses post-injection are not in the scope of this article. Taking cues from existing in vitro modelling technologies, the purpose of this article is to propose "critical parameters" of the IM environment that could be examined in hypothesis-driven studies. Outcomes of such studies might ultimately be useful in predicting and improving in vivo PK performance of IM injected drugs.


Assuntos
Preparações Farmacêuticas , Injeções Intramusculares , Vacinação
14.
Pharmaceutics ; 13(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452131

RESUMO

The low permeability of nanoparticles (NPs) across the intestinal epithelium remains a major challenge for their application of delivering macromolecular therapeutic agents via the oral route. Previous studies have demonstrated the epithelial transcytosis capacity of a non-toxic version of Pseudomonas aeruginosa exotoxin A (ntPE). Here, we show that ntPE can be used to deliver the protein cargo green fluorescent protein (GFP) or human growth hormone (hGH), as genetic fusions, across intact rat jejunum in a model where the material is administered by direct intra-luminal injection (ILI) in vivo in a transcytosis process that required less than 15 min. Next, ntPE chemically coupled onto biodegradable alginate/chitosan condensate nanoparticles (AC NPs-ntPE) were shown to transport similarly to ntPE-GFP and ntPE-hGH across rat jejunum. Finally, AC NPs-ntPE loaded with GFP as a model cargo were demonstrated to undergo a similar transcytosis process that resulted in GFP being colocalized with CD11c+ cells in the lamina propria after 30 min. Control NP preparations, not decorated with ntPE, were not observed within polarized epithelial cells or within the cells of the lamina propria. These studies demonstrate the capacity of ntPE to facilitate the transcytosis of a covalently associated protein cargo as well as a biodegradable NP that can undergo transcytosis across the intestinal epithelium to deliver a noncovalently associated protein cargo. In sum, these studies support the potential applications of ntPE to facilitate the oral delivery of macromolecular therapeutics under conditions of covalent or non-covalent association.

15.
Microbiome ; 9(1): 183, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493329

RESUMO

BACKGROUND: P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. RESULTS: We have identified a "functional core" microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. CONCLUSION: Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation. Video abstract.


Assuntos
Microbioma Gastrointestinal , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Animais , Microbioma Gastrointestinal/genética , Homeostase , Humanos , Mucosa Intestinal , Camundongos
16.
J Immunol ; 181(11): 8044-52, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19017997

RESUMO

Neutrophil transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Thus, insight into the directional movement of neutrophils across epithelial barriers will provide important information relating to the mechanisms of such inflammatory disorders. The eicosanoid hepoxilin A(3), an endogenous product of 12-lipoxygenase activity, is secreted from the apical surface of the epithelial barrier and establishes a chemotactic gradient to guide neutrophils from the submucosa across epithelia to the luminal site of an inflammatory stimulus, the final step in neutrophil recruitment. Currently, little is known regarding how hepoxilin A(3) is secreted from the intestinal epithelium during an inflammatory insult. In this study, we reveal that hepoxilin A(3) is a substrate for the apical efflux ATP-binding protein transporter multidrug resistance-associated protein 2 (MRP2). Moreover, using multiple in vitro and in vivo models, we show that induction of intestinal inflammation profoundly up-regulates apical expression of MRP2, and that interfering with hepoxilin A(3) synthesis and/or inhibition of MRP2 function results in a marked reduction in inflammation and severity of disease. Lastly, examination of inflamed intestinal epithelia in human biopsies revealed up-regulation of MRP2. Thus, blocking hepoxilin A(3) synthesis and/or inhibiting MRP2 may lead to the development of new therapeutic strategies for the treatment of epithelial-associated inflammatory conditions.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Enteropatias/imunologia , Mucosa Intestinal/imunologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Ácido 8,11,14-Eicosatrienoico/imunologia , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Araquidonato 12-Lipoxigenase/imunologia , Araquidonato 12-Lipoxigenase/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Enteropatias/metabolismo , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Neutrófilos/metabolismo , Neutrófilos/patologia
17.
J Control Release ; 321: 475-482, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32105759

RESUMO

Subcutaneous (SC) delivery of biotherapeutics is well established as a route of administration across many therapeutic areas and has been shown to be effective and well-tolerated. It can offer several advantages over intravenous administration. This notwithstanding, there remain critical development issues and knowledge gaps in SC drug delivery. To articulate and address these issues, the SC Drug Delivery and Development Consortium was convened in 2018 as a pre-competitive collaboration of industry experts in drug delivery, device development, and commercialization. In this review, we outline the Consortium's vision and mission in advancing the development of patient-centered biotherapeutics and establishing a collaborative organization that facilitates open sharing of information and gives voice to diverse viewpoints from SC experts across industries and disciplines. Additionally, we describe the current landscape and challenges associated with SC administration of therapeutic proteins (specifically monoclonal antibodies) and offer insights into potential solutions to these challenges within the context of 8 problem statements developed by the Consortium to highlight key gaps, unmet needs, and actionable issues. Current and future opportunities to accelerate progress in the field through technological advances and the development of drug delivery tools are also discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Tela Subcutânea , Administração Intravenosa , Anticorpos Monoclonais , Humanos , Injeções Subcutâneas
18.
Tissue Barriers ; 8(1): 1710429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31928299

RESUMO

Cholix (Chx) is expressed by the intestinal pathogen Vibrio cholerae as a single chain of 634 amino acids (~70.7 kDa protein) that folds into three distinct domains, with elements of the second and third domains being involved in accessing the cytoplasm of nonpolarized cells and inciting cell death via ADP-ribosylation of elongation factor 2, respectively. In order to reach nonpolarized cells within the intestinal lamina propria, however, Chx must cross the polarized epithelial barrier in an intact form. Here, we provide invitro and invivo demonstrations that a nontoxic Chx transports across intestinal epithelium via a vesicular trafficking pathway that rapidly achieves vesicular apical to basal (A→B) transcytosis and avoids routing to lysosomes. Specifically, Chx traffics in apical endocytic Rab7+ vesicles and in basal exocytic Rab11+ vesicles with a transition between these domains occurring in the ER-Golgi intermediate compartment (ERGIC) through interactions with the lectin mannose-binding protein 1 (LMAN1) protein that undergoes an intracellular re-distribution that coincides with the re-organization of COPI+ and COPII+ vesicular structures. Truncation studies demonstrated that domain I of Chx alone was sufficient to efficiently complete A→B transcytosis and capable of ferrying genetically conjoined human growth hormone (hGH). These studies provide evidence for a pathophysiological strategy where native Chx exotoxin secreted in the intestinal lumen by nonpandemic V. cholerae can reach nonpolarized cells within the lamina propria in an intact form by using a nondestructive pathway to cross in the intestinal epithelial that appears useful for oral delivery of biopharmaceuticals.One-Sentence Summary: Elements within the first domain of the Cholix exotoxin protein are essential and sufficient for the apical to basal transcytosis of this Vibrio cholerae-derived virulence factor across polarized intestinal epithelial cells.


Assuntos
Fatores de Ribosilação do ADP/química , Toxinas Bacterianas/química , Domínios Proteicos/fisiologia , Transcitose/fisiologia , Humanos
19.
Bioengineering (Basel) ; 7(2)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545910

RESUMO

Current therapies for treating pancreatic ductal adenocarcinoma (PDAC) are largely ineffective, with the desmoplastic environment established within these tumors being considered a central issue. We established a 3D spheroid co-culture in vitro model using a PDAC cell line (either PANC-1 or Capan-2), combined with stellate cells freshly isolated from pancreatic tumors (PSC) or hepatic lesions (HSC), and human type I collagen to analyze the efficiency of the chemotherapeutic gemcitabine (GEM) as well as two novel drug candidates derived from natural products: pseudopterosin (PsA-D) and O-methyltylophorinidine (TYLO). Traditional 2D in vitro testing of these agents for cytotoxicity on PANC-1 demonstrated IC50 values of 4.6 (±0.47) nM, 34.02 (±1.35) µM, and 1.99 (± 0.13) µM for Tylo, PsA-D, and GEM, respectively; these values were comparable for Capan-2: 5.58 (±1.74) nM, 33.94 (±1.02) µM, and 0.41 (±0.06) µM for Tylo, PsA-D, and GEM, respectively. Importantly, by assessing the extent of viable cells within 3D co-culture spheroids of PANC-1 with PSC or HSC, we could demonstrate a significant lack of efficacy for GEM, while TYLO remained active and PsA-D showed slightly reduced efficacy: GEM in PANC-1/PSC (IC50 = >100 µM) or PANC-1/HSC (IC50 = >100 µM) spheroids, TYLO in PANC-1/PSC (IC50 = 3.57 ± 1.30 nM) or PANC-1/HSC (IC50 = 6.39 ± 2.28 nM) spheroids, and to PsA-D in PANC-1/PSC (IC50 = 54.42 ± 12.79 µM) or PANC-1/HSC (IC50 = 51.75 ± 0.60 µM). Microscopic 3D rendering supported these cytotoxicity outcomes, showing little or no morphological spheroid structure change during this period of rapid cell death. Our results support the use of this 3D spheroid co-culture in vitro model having a desmoplastic microenvironment for the identification of possible novel chemotherapeutic drug candidates for PDAC, such as TYLO and PsA-D.

20.
Pharmaceutics ; 11(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058802

RESUMO

A special symposium of the Academy of Pharmaceutical Sciences Nanomedicines Focus Group reviewed the current status of the use of nanomedicines for the delivery of biologics drugs. This meeting was particularly timely with the recent approval of the first siRNA-containing product Onpattro™ (patisiran), which is formulated as a lipid nanoparticle for intravenous infusion, and the increasing interest in the use of nanomedicines for the oral delivery of biologics. The challenges in delivering such molecules were discussed with specific emphasis on the delivery both across and into cells. The latest developments in Molecular Envelope Technology® (Nanomerics Ltd, London, UK), liposomal drug delivery (both from an academic and industrial perspective), opportunities offered by the endocytic pathway, delivery using genetically engineered viral vectors (PsiOxus Technologies Ltd, Abingdon, UK), Transint™ technology (Applied Molecular Transport Inc., South San Francisco, CA, USA), which has the potential to deliver a wide range of macromolecules, and AstraZeneca's initiatives in mRNA delivery were covered with a focus on their uses in difficult to treat diseases, including cancers. Preclinical data were presented for each of the technologies and where sufficiently advanced, plans for clinical studies as well as early clinical data. The meeting covered the work in progress in this exciting area and highlighted some key technologies to look out for in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA