Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832496

RESUMO

As one of the most important crops, rice provides the major food for more than half of the world population. However, its production is limited by many environmental factors, among which high temperature stress (HS) frequently occurs during anthesis and reduces its spikelet fertility. To explore the mechanism of HS tolerance in rice, we conducted a comparative proteomics analysis on the anthers between HS resistant and sensitive cultivars under different levels of high temperature. Under the same HS treatment, the resistant cultivar showed much higher spikelet fertility than the sensitive cultivar. Proteomic data showed that HS lead to the degradation of ribosomal proteins in the sensitive cultivar but not in the resistant one, which might result in the injury of protein biosynthetic machinery. In contrast, HS induced the increase of sHSP, ß-expansins and lipid transfer proteins in the resistant cultivar, which might contribute to its ability to tolerate HS. The results provide some new insights into the mechanism of rice HS response.


Assuntos
Resposta ao Choque Térmico , Oryza/metabolismo , Proteoma/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas , Proteólise , Proteínas Ribossômicas/metabolismo
2.
Front Plant Sci ; 15: 1326606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434427

RESUMO

Micrometeorological monitoring is not just an effective method of determining the impact of heat stress on rice, but also a reliable way of understanding how to screen for heat tolerance in rice. The aim of this study was to use micrometeorological monitoring to determine varietal differences in rice plants grown under two weather scenarios-Long-term Heat Scenario (LHS) and Normal Weather Scenario (NWS)- so as to establish reliable methods for heat tolerance screening. Experiments were conducted with two heat susceptible varieties-Mianhui 101 and IR64-and two heat tolerant varieties, Quanliangyou 681 and SDWG005. We used staggered sowing method to ensure that all varieties flower at the same time. Our results showed that heat tolerant varieties maintained lower canopy temperature compared to heat susceptible varieties, not just during the crucial flowering period of 10 am to 12 pm, but throughout the entire day and night. The higher stomatal conductance rate observed in heat tolerant varieties possibly decreased their canopy temperatures through the process of evaporative cooling during transpiration. Conversely, we found that panicle temperature cannot be used to screen for heat tolerance at night, as we observed no significant difference in the panicle temperature of heat tolerant and heat susceptible varieties at night. However, we also reported that higher panicle temperature in heat susceptible varieties decreased spikelet fertility rate, while low panicle temperature in heat tolerant varieties increased spikelet fertility rate. In conclusion, the results of this study showed that canopy temperature is probably the most reliable trait to screen for heat tolerance in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA