Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396645

RESUMO

Tissue engineering is an interdisciplinary field that develops new methods to enhance the regeneration of damaged tissues, including those of wounds. Polymer systems containing bioactive molecules can play an important role in accelerating tissue regeneration, mitigating inflammation process, and fighting bacterial infection. Chitosan (CS) has attracted much attention regarding its use in wound healing system fabrication thanks to its biocompatibility, biodegradability, and the presence of functional groups in its structure. In this work, bioactive chitosan-based membranes were obtained by both chemical and physical modifications of the polymer with glycidyl methacrylate and glycerol (GLY), respectively. The most suitable GLY concentration to obtain wound healing systems with good elongation at break, a good water vapor transmission rate (WVTR), and good wettability values was 20% (w/w). Afterwards, the membranes were crosslinked with different concentrations of ethylene glycol dimethacrylate (EGDMA). By using a concentration of 0.05 mM EGDMA, membranes with a contact angle and WVTR values suitable for the application were obtained. To make the system bioactive, 3,4-dihydrocinnamic acid (HCAF) was introduced into the membranes, either by imbibition or chemical reaction, using laccase as a catalyst. Thermal and mechanical analyses confirmed the formation of a cohesive network, which limited the plasticizing effect of GLY, particularly when HCAF was chemically bound. The HCAF-imbibed membrane showed a good antioxidant and antimicrobial activity, highlighting the potential of this system for the treatment of wound healing.


Assuntos
Anti-Infecciosos , Quitosana , Quitosana/farmacologia , Quitosana/química , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Cicatrização , Polímeros/farmacologia , Antibacterianos/farmacologia
2.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430401

RESUMO

An improved method that allows the robust characterization of surfaces is necessary to accurately predict the biofouling formation on construction materials of photobioreactors (PBR). Exopolymeric substances (EPS), such as proteins and polysaccharides, have been demonstrated to present a similar behavior to cells in terms of surface adhesion. In this work, these EPS were used to optimize parameters, such as EPS concentration or adsorption time, to evaluate accurately the adsorption capacity of surfaces and, with it, predict the biofouling formation in contact with microalgae cultures. Once the method was optimized, the characterization of seven commercial polymeric surfaces was submitted to different abrasive particles sizes, which modified the roughness of the samples, as well as protein and polysaccharide lawns, which were prepared and carried out in order to evaluate the characteristics of these substances. The characterization consisted of the determination of surface free energy, water adhesion tension, and critical tension determined from the measurement of the contact angle, roughness, surface zeta potential, and the EPS adhesion capacity of each material. This will be useful to understand the behavior of the surface in the function of its characteristics and the interaction with the solutions of EPS, concluding that the hydrophobic and smooth surfaces present good anti-biofouling characteristics.


Assuntos
Incrustação Biológica , Microalgas , Fotobiorreatores , Adsorção , Matriz Extracelular de Substâncias Poliméricas , Incrustação Biológica/prevenção & controle
3.
Int J Mol Sci ; 19(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572587

RESUMO

Antimicrobial polymers and coatings are potent types of materials for fighting microbial infections, and as such, they have attracted increased attention in many fields. Here, a series of antimicrobial copolymers were prepared by radical copolymerization of 2-hydroxyethyl methacrylate (HEMA), which is widely employed in the manufacturing of biomedical devices, and the monomer 2-(4-methylthiazol-5-yl)ethyl methacrylate (MTA), which bears thiazole side groups susceptible to quaternization, to provide a positive charge. The copolymers were further quantitatively quaternized with either methyl or butyl iodide, as demonstrated by nuclear magnetic resonance (NMR) and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Then, the polycations were characterized by zeta potential measurements to evaluate their effective charge and by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to evaluate their thermal properties. The ζ-potential study revealed that the quaternized copolymers with intermediate compositions present higher charges than the corresponding homopolymers. The cationic copolymers showed greater glass transition temperatures than poly(2-hydroxyethyl methacrylate) (PHEMA), with values higher than 100 °C, in particular those quaternized with methyl iodide. The TGA studies showed that the thermal stability of polycations varies with the composition, improving as the content of HEMA in the copolymer increases. Microbial assays targeting Gram-positive and Gram-negative bacteria confirmed that the incorporation of a low number of cationic units into PHEMA provides antimicrobial character with a minimum inhibitory concentration (MIC) of 128 µg mL-1. Remarkably, copolymers with MTA molar fractions higher than 0.50 exhibited MIC values as low as 8 µg mL-1.


Assuntos
Antibacterianos/farmacologia , Poli-Hidroxietil Metacrilato/farmacologia , Polimerização , Tiazóis/farmacologia , Varredura Diferencial de Calorimetria , Cátions , Eletrólitos/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Eletricidade Estática , Temperatura , Termogravimetria
4.
Biomacromolecules ; 16(1): 295-303, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25438196

RESUMO

Polymers with quaternary ammonium groups such as quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMAQ) have been used as antimicrobial agents because of their demonstrated good antimicrobial activities against a huge number and types of microbes, although their cytotoxicity is also well-known. In this work block copolymers based on PDMAEMAQ were synthesized containing hydrophobic segments of poly(butyl methacrylate) to improve the antimicrobial activity and glycomonomer units with the aim of decreasing the cytotoxicity of the polymers. Hydrophobic butyl methacrylate (BMA) blocks were chain extended by statistical and block copolymers of DMAEMA and 2-{[(d-glucosamin-2-N-yl)carbonylethyl methacrylate (HEMAGl) glycomonomer of different compositions. In order to find the balance between antimicrobial activity and cytotoxicity, the selectivity index of each polymer was obtained from minimum inhibitory concentrations (MIC) and white and red blood cells toxicity measurements.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Metacrilatos/farmacologia , Nylons/farmacologia , Anti-Infecciosos/síntese química , Eritrócitos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos/efeitos dos fármacos , Metacrilatos/síntese química , Testes de Sensibilidade Microbiana , Nylons/síntese química , Polímeros/química , Polímeros/farmacologia
5.
Phys Chem Chem Phys ; 17(43): 29319-26, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26469391

RESUMO

Here, a simple and rapid electrochemical approach to synthesize TiO2 nanoparticles in aqueous solution is reported. This method consists in the electro-oxidation of titanium foil in a tetrabutylammonium bromide aqueous solution, which acts as both an electrolyte and a surfactant. Amorphous TiO2 particles in the nanoscale (∼5 nm), well dispersed in aqueous solution, were directly formed by applying low current densities in a short reaction time. It was demonstrated that several experimental parameters influence the reaction yield; an increase in the current, temperature and reaction time augments the quantity of the obtained material. Then, the amorphous nanoparticles were completely crystallized into a pure anatase phase by thermal treatment under an air atmosphere as analyzed by X-ray diffraction and Raman spectroscopy. Besides, the size of the nanoparticles increased to approximately 12 nm in the calcination process. The band gap energies of the resulting TiO2 anatase nanoparticles were determined by diffuse reflectance measurements according to the Kubelka Munk theory, revealing low values between 2.95 and 3.10 eV. Therefore, the results indicate the success of this method to create TiO2 nanoparticles in aqueous medium with good optical properties.


Assuntos
Nanopartículas Metálicas/química , Titânio/química , Técnicas Eletroquímicas , Eletrodos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Tamanho da Partícula , Água/química
6.
Langmuir ; 30(21): 6134-41, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24814700

RESUMO

In the current paper, we prepared microstructured porous films by the breath figures approach using polymer blends consisting of polystyrene as the major component and an amphiphilic additive, either a synthetic block copolymer {two different polystyrene-b-poly[poly(ethylene glycol) methyl ether methacrylate] copolymers} or a series of commercial surfactants. Tetrahydrofuran was employed as the solvent. Confocal micro-Raman spectroscopy demonstrated the preferential location of the amphiphilic additives in the cavities of the film as a consequence of the breath figures mechanism. However, the distribution of the copolymer within the cavities varies depending upon the structure and, more precisely, the surface properties of the additives, leading to three different situations. First of all, the copolymer with a larger polystyrene segment, insoluble in the condensed water droplets, is homogeneously distributed along the whole surface of the cavities. On the contrary, when the copolymer is soluble in water (shorter polystyrene segment), it migrates inside the droplet and a coffee-stain phenomenon takes place during the water droplet evaporation, conducting to a ring-like deposition on the top edge of the cavities. Finally, when a water-soluble surfactant with high surface activity is used, the surfactant is solubilized inside the water droplets, which provokes a decrease on the surface tension and the coffee-ring effect is modified. In this situation, the copolymer covers the bottom of the pore.


Assuntos
Polímeros/química , Furanos/química , Luz , Substâncias Macromoleculares , Teste de Materiais , Micelas , Microscopia , Óptica e Fotônica , Tamanho da Partícula , Poliestirenos/química , Espalhamento de Radiação , Solubilidade , Análise Espectral Raman , Propriedades de Superfície , Tensoativos/química , Água/química
7.
Biomacromolecules ; 15(9): 3338-48, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25068628

RESUMO

Herein we describe the preparation of multigradient porous platforms by using the breath figures approach. In a single and straightforward step, we prepared porous surfaces in which three different parameters vary gradually from the edge of the sample to the center in a radial manner. Thus, we evidenced the gradual variation of the pore size and the shape of the pores that can be varied, depending on the sample concentration, but also depending on their radial position within the same sample. In addition, we succeeded in the control over the chemical composition inside and outside the pores as well as the variation of the concentration of block copolymer inside the pores as a function of their radial position. Moreover, the chemical composition and the variable cavity size of porous surfaces have been evaluated to analyze the influence of these variables on the selective bacterial immobilization. To the best of our knowledge this is the first example in which, by using a simple one-step strategy, a multigradient surface can be obtained. These initial results can be the base to construct platforms for selective immobilization and isolation of bacteria.


Assuntos
Aderência Bacteriana , Membranas Artificiais , Metacrilatos/química , Metacrilatos/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/síntese química , Staphylococcus aureus/citologia , Staphylococcus aureus/metabolismo , Porosidade
8.
Polymers (Basel) ; 16(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932077

RESUMO

In this work, we focused on the bioactivity and antibacterial behavior of PLA-based electrospun fibers, efibers, reinforced with both MgO and Mg(OH)2 nanoparticles, NPs. The evolution of PLA-based efibers was followed in terms of morphology, FTIR, XRD, and visual appearance. The bioactivity was discussed in terms of hydroxyapatite growth after 28 days, considered as T28, of immersion in simulated body fluid, SBF. In particular, the biomineralization process evidenced after immersion in SBF started at T14 in both systems. The number of precipitated crystals increased by increasing the amount of both NPs. The chemical composition of the precipitated crystals was also characterized in terms of the Ca/P molar ratio after T28 of immersion in SBF, indicating the presence of hydroxyapatite on the surface of both reinforced efibers. Moreover, a reduction in the average diameter of the PLA-based efibers was observed, reaching a maximum reduction of 46 and 60% in the average diameter of neat PLA and PLA:OLA efibers, respectively, after 28 days of immersion in SBF. The antibacterial behavior of the MgO and Mg(OH)2 NPs in the PLA-based electrospun fibers was tested against Escherichia coli, E. coli, as the Gram-negative bacteria, and Staphylococcus aureus, S. aureus, as the Gram-positive bacteria, obtaining the best antibacterial activity against the Gram-negative bacteria E. coli of 21 ± 2% and 34 ± 6% for the highest concentration of MgO and Mg(OH)2 NPs, respectively.

9.
Int J Mol Sci ; 14(5): 9249-66, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23629663

RESUMO

Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning calorimetry (DSC). TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Nanocompostos/química , Poliésteres/síntese química , Poliésteres/farmacologia , Titânio/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanocompostos/ultraestrutura , Transição de Fase , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Temperatura , Termogravimetria , Difração de Raios X
10.
Polymers (Basel) ; 15(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987340

RESUMO

In this work, we described the formation of polymeric networks with potential antimicrobial character based on an acrylate oligomer, poly(mannitol sebacate) (PMS), and an enzymatically synthesized methacrylic monomer with thiazole groups (MTA). Networks with different content of MTA were prepared, and further physico-chemically characterized by microhardness, water contact angle measurements, and differential scanning calorimetry. Monomer incorporation into the networks and subsequent quaternization to provide thiazolium moieties affected the mechanical behavior and the surface wettability of the networks. Moreover, the introduction of permanent cationic charges in the network surface could give antimicrobial activity to them. Therefore, the antibacterial behavior and the hemotoxicity were analyzed against Gram-positive and Gram-negative bacteria and red blood cells, respectively.

11.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904481

RESUMO

The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.

12.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177226

RESUMO

Composites based on an L-rich poly(lactic acid) (PLLA) and MCM-41, either neat or modified with a silver (MCM-41@Ag), are achieved by solvent casting, being next processed by compression molding. Ag is mainly embedded as nanowires within the hybrid MCM-41@Ag particles, enabling its antimicrobial character. In these composites, the PLLA thermal stability, nucleation efficiency, and mechanical response are dependent on the MCM-41 nature and, to a lesser extent, on its content. Thus, differences in transitions of the PLLA matrix are noticed during cooling at 10 °C/min and in the subsequent heating when composites with neat or modified MCM-41 are compared. A very remarkable nucleation effect is played by pristine MCM-41, being inferior when MCM-41@Ag is incorporated into the PLLA. Wide angle X-ray scattering (WAXS) measurements using synchrotron radiation and performed under variable-temperature conditions in the composites containing MCM-41@Ag indicate that during cold crystallization, the disordered α' polymorph is initially formed, but it rapidly transforms into ordered α crystals. A long spacing peak, clearly seen in pure PLLA, appears as a small shoulder in PLLAMCM@Ag4 and is undetectable in PLLAMCM@Ag9 and PLLAMCM@Ag20. Furthermore, an increase in MH with the silica content is found in the two sets of composites, the higher MH values being observed in the family of PLLA and MCM-41@Ag. Finally, remarkable antimicrobial features are noticeable in the composites with MCM-41@Ag since this modified silica transfers its biocidal characteristics into the PLLA composites.

13.
ACS Appl Bio Mater ; 6(11): 4805-4813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862451

RESUMO

Combining different antimicrobial agents has emerged as a promising strategy to enhance efficacy and address resistance evolution. In this study, we investigated the synergistic antimicrobial effect of a cationic biobased polymer and the antimicrobial peptide (AMP) temporin L, with the goal of developing multifunctional electrospun fibers for potential biomedical applications, particularly in wound dressing. A clickable polymer with pendent alkyne groups was synthesized by using a biobased itaconic acid building block. Subsequently, the polymer was functionalized through click chemistry with thiazolium groups derived from vitamin B1 (PTTIQ), as well as a combination of thiazolium and AMP temporin L, resulting in a conjugate polymer-peptide (PTTIQ-AMP). The individual and combined effects of the cationic PTTIQ, Temporin L, and PTTIQ-AMP were evaluated against Gram-positive and Gram-negative bacteria as well as Candida species. The results demonstrated that most combinations exhibited an indifferent effect, whereas the covalently conjugated PTTIQ-AMP displayed an antagonistic effect, potentially attributed to the aggregation process. Both antimicrobial compounds, PTTIQ and temporin L, were incorporated into poly(lactic acid) electrospun fibers using the supercritical solvent impregnation method. This approach yielded fibers with improved antibacterial performance, as a result of the potent activity exerted by the AMP and the nonleaching nature of the cationic polymer, thereby enhancing long-term effectiveness.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Alcinos , Cátions , Polímeros/farmacologia
14.
Langmuir ; 28(25): 9778-87, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22616876

RESUMO

Herein, a facile water-assisted templating approach, the so-called breath figures method, has been employed to prepare multifunctional and hierarchically structured porous patterned films with order at different length scales (nano- and micrometer). Tetrahydrofuran solutions of ternary blends consisting on high molecular weight polystyrene, an amphiphilic block copolymer, polystyrene-b-poly[poly(ethylene glycol) methyl ether methacrylate] (PS(40)-b-P(PEGMA300)(48)), and a fluorinated copolymer, polystyrene-b-poly(2,3,4,5,6-pentafluorostyrene) (P5FS(21)-b-PS(31)), have been used to obtain films varying the proportion of the three components. Confocal micro-Raman spectroscopy and atomic force microscopy demonstrated the preferential location of the different functionalities in the films. Because of the breath figures mechanism, the amphiphilic copolymer yield pores enriched in hydrophilic functionality while the fluorinated copolymer remained mixed with the PS matrix and eventually also forming self-assembled nanostructures at the surface. As a consequence, two levels of order can be observed, i.e., micrometer size pores with nanostructured domains due to the block copolymer self-assembly. In addition, the distribution of the amphiphilic copolymer within the holes is not regular being located principally on the edges of the cavities. This can be attributed to the coffee stain phenomenon occurring in the water droplets as a consequence of the segregation of the block copolymers to the droplets and their self-assembly.

15.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015598

RESUMO

We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, coupled with a rotatory collector. The obtained fibers were extensively studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXS), employing synchrotron radiation. The incorporation of the PMSs on the PLA fibers did not significantly affect the fiber diameters, whereas the alignment was almost maintained. The crystallinity and thermal properties were also slightly modified with the addition of PMSs, and an increase in the degree of crystallinity and in the glass transition temperature of the blend compared to PLA was observed. Remarkably, the PLA/PMSs fibers were more ductile due to the elastomeric character of PMS, with higher values of elongation at break and tensile strengths, and a smaller Young modulus in comparison with the PLA fibers. These modifications of the properties were more noticeable in the case of the acrylated PMS, which also provided readily available functional groups at the surface for further chemical reactions, such as the Michael addition or crosslinking processes.

16.
Polymers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502900

RESUMO

Polylactic acid (PLA) is one of the known synthetic polymers with potential piezoelectric activity but this property is directly related to both the crystalline structure and crystalline degree. Depending on the process conditions, PLA can crystallize in three different forms: α-, ß-, and γ- form, with ß-crystalline phase being the piezoelectric one. To obtain this crystalline structure, transformation of α to ß is required. To do so, the strategies followed so far consisted in annealing or/and stretching of previously obtained PLA in the form of films or fibers, that is, additional post-processing steps. In this work, we are able to obtain PLA fibers with high macromolecular alignment, as demonstrated by SEM, and in the ß polymorph, as detected by X-ray diffraction (XRD) without the requirement of post-processing. For that, PLA fibers were prepared by using an electrospinning coupled to a drum collector. This set up and the optimization of the parameters (voltage flow-rate, and drum collector speed) induced molecular stretching giving rise to uniaxially oriented and highly aligned fibers.

17.
Macromol Biosci ; 21(10): e2100156, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231313

RESUMO

This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.


Assuntos
Poliésteres , Polímeros , Sistemas de Liberação de Medicamentos , Polimerização , Solventes
18.
Materials (Basel) ; 14(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885630

RESUMO

Herein, we develop a well-defined antibacterial polymer based on poly(2-hydroxyethyl methacrylate) (PHEMA) and a derivative of vitamin B1, easily degradable into inactive and biocompatible compounds. Hence, thiazole moiety was attached to HEMA monomer through a carbonate pH-sensitive linkage and the resulting monomer was polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. N-alkylation reaction of the thiazole groups leads to cationic polymer with thiazolium groups. This polymer exhibits excellent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) with an MIC value of 78 µg mL-1, whereas its degradation product, thiazolium small molecule, was found to be inactive. Hemotoxicity studies confirm the negligible cytotoxicity of the degradation product in comparison with the original antibacterial polymer. The degradation of the polymer at physiological pH was found to be progressive and slow, thus the cationic polymer is expected to maintain its antibacterial characteristics at physiological conditions for a relative long period of time before its degradation. This degradation minimizes antimicrobial pollution in the environment and side effects in the body after eradicating bacterial infection.

19.
Langmuir ; 26(24): 18617-20, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21080668

RESUMO

We describe the preparation, by precipitation copolymerization, of multifunctional divinylbenzene-co-pentafluorostyrene microspheres able to produce superhydrophobic surfaces or disperse in aqueous media upon annealing either in air or water, respectively. For that purpose, an amphiphilic block copolymer, polystyrene-b-poly(acrylic acid), was introduced in the initial feed composed of divinylbenzene and 2,3,4,5,6-pentafluorostyrene. As a result, fluorinated particles were obtained in which the diblock copolymer was encapsulated during the polymerization step. Upon annealing in dry air, the particles are completely hydrophobic and form superhydrophobic surfaces. On the contrary, annealing in water induces the reorientation of the PAA groups toward the particle interface, thus the particles can be dispersed in aqueous media. In addition, the presence of carboxylic acid groups at the particle interface permits us to switch the surface charge between negative and neutral depending on the environmental pH.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microesferas , Água/química , Resinas Acrílicas/química , Concentração de Íons de Hidrogênio
20.
Langmuir ; 26(11): 8552-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20151693

RESUMO

We prepared breath figure patterns on functional surfaces by the surface segregation of a statistical glycopolymer, (styrene-co-2-(D-glucopyranosyl) aminocarbonyloxy ethyl acrylate (S-HEAGl). The synthesis of the statistical glycopolymer is prepared in a straightforward approach by conventional free radical copolymerization of styrene and the unprotected glycomonomer. Blends of this copolymer and high-molecular-weight polystyrene were spin coated from THF solutions, leading to the formation of surfaces with both controlled functionality and topography. AFM studies revealed that both the composition of the blend and the relative humidity play key roles in the size and distribution of the pores at the interface. Thus, the topographical features obtained on the polymer surfaces during film preparation by the breath figure methodology varied from 200 to 700 nm. Moreover, this approach leads to porous films in which the hydrophilic glycomonomer units are oriented toward the pore interface because upon soft annealing in water the holes are partially swelled. The self-organization of the glycopolymer within the pores was additionally confirmed by the reaction of carbohydrate hydroxyl groups with rhodamine isocyanate. Equally, we demonstrate the bioactivity of the anchored glycopolymers by means of the lectin binding test using concanavalin A (Con A).


Assuntos
Polímeros/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia de Fluorescência , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA