Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 219, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245706

RESUMO

BACKGROUND: Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS: Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS: Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS: The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.


Assuntos
Depressão , Endocanabinoides , Microglia , Periodontite , Ratos Wistar , Transdução de Sinais , Animais , Ratos , Endocanabinoides/metabolismo , Microglia/metabolismo , Microglia/patologia , Periodontite/patologia , Periodontite/metabolismo , Transdução de Sinais/fisiologia , Depressão/metabolismo , Depressão/patologia , Masculino , Modelos Animais de Doenças , Fenótipo , Inflamação/metabolismo , Inflamação/patologia
2.
J Clin Periodontol ; 50(5): 642-656, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36644813

RESUMO

AIM: To explore the potential mechanisms of neuroinflammation (microglia, blood-brain barrier [BBB] permeability, and the sphingosine-1-phosphate [S1P] pathways) resulting from the association between periodontitis and depression in rats. MATERIALS AND METHODS: This pre-clinical in vivo experimental study used Wistar rats, in which experimental periodontitis (P) was induced by using oral gavages with Porphyromonas gingivalis and Fusobacterium nucleatum. Then, a chronic mild stress (CMS) model was implemented to induce a depressive-like behaviour, resulting in four groups: P with CMS (P+CMS+), P without CMS (P+CMS-), CMS without P (P-CMS+), and control (P-CMS-). After harvesting brain samples, protein/mRNA expression analyses and fluorescence immunohistochemistry were performed in the frontal cortex (FC). Results were analysed by ANOVA. RESULTS: CMS exposure increased the number of microglia (an indicator of neuroinflammation) in the FC. In the combined model (P+CMS+), there was a decrease in the expression of tight junction proteins (zonula occludens-1 [ZO-1], occludin) and an increase in intercellular and vascular cell adhesion molecules (ICAM-1, VCAM-1) and matrix metalloproteinase 9 (MMP9), suggesting a more severe disruption of the BBB. The enzymes and receptors of S1P were also differentially regulated. CONCLUSIONS: Microglia, BBB permeability, and S1P pathways could be relevant mechanisms explaining the association between periodontitis and depression.


Assuntos
Barreira Hematoencefálica , Periodontite , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Ratos Wistar , Doenças Neuroinflamatórias , Depressão , Periodontite/metabolismo
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628815

RESUMO

Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.


Assuntos
Sistema Imunitário , Transtornos Mentais , Humanos , Transtornos Mentais/tratamento farmacológico , Esfingosina , Encéfalo
4.
Cell Signal ; 98: 110417, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878754

RESUMO

The X-linked form of Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia, is due to mutations in the ANOS1 gene that encodes for the extracellular matrix (ECM) protein anosmin 1. Prokineticins (PKs) exert their biological functions through the activation of the G protein-coupled receptors (GPCRs) prokineticin receptor 1 and 2 (PKR1, 2), and mutations in the PK2 and PKR2 genes are involved in the pathogenesis of KS. We have previously shown interaction between PKR2 and anosmin 1 in vitro. In the current report we present evidence of the modulation of PK2/PKR2 activity by anosmin 1, since this protein is able to enhance the activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) pathway elicited by PK2 through PKR2. We also show that the N-terminal region of anosmin 1, capable of binding to the PK2-binding domain of PKR2, seems to be responsible for this effect. The whey acidic protein domain (WAP) is necessary for this modulatory activity, although data from GST pull-down (glutathione-S-transferase) and analysis of the N267K mutation in the fibronectin type III domain 1 (FnIII.1) suggest the cysteine-rich (CR) and the FnIII.1 domains could assist the WAP domain both in the binding to PKR2 and in the modulation of the activation of the receptor by PK2. Our data support the idea of a modulatory role of anosmin 1 in the biological effects controlled by the PK2/PKR2 system.


Assuntos
Síndrome de Kallmann , Proteínas do Tecido Nervoso , Proteínas da Matriz Extracelular/metabolismo , Humanos , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Front Pediatr ; 9: 761726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858907

RESUMO

Background: Transplant-associated thrombotic microangiopathy (TA-TMA) is a serious complication of hematopoietic stem cell transplantation (HSCT) associated with high morbidity and mortality. High-risk TA-TMA (hrTA-TMA) is characterized by multifactorial endothelial damage caused by environmental stressors, dysregulation of the complement system, and genetic predisposition. Complement inhibitors have significantly decreased mortality and are the current treatment of choice. In this article, we describe our experience with the use of eculizumab in pediatric patients diagnosed with hrT-TMA after HSCT. Method: Retrospective study of pediatric patients with hrTA-TMA treated with eculizumab between January 2016 and December 2020. Results: Four pediatric patients aged 1, 12, 14, and 17 years at the time of HSCT were diagnosed with hrTA-TMA and treated with eculizumab during the study. At diagnosis, they all had renal impairment with proteinuria, and hypertension under treatment with at least two antihypertensive drugs. The patient who presented multisystemic involvement died instead of treatment. The three patients with exclusive renal involvement achieved TA-TMA resolution after treatment with eculizumab for 65, 52, and 40.6 weeks and were able to stop treatment. The two patients with follow-up data one year after eculizumab withdrawal sustained a favorable response. Eculizumab was well tolerated, and with adequate vaccination and antibiotic prophylaxis, did not increase the risk of infection. Conclusions: Eculizumab appears to be both safe and effective for the treatment of hrTA-TMA in patients with renal impairment. Early diagnosis and initiation of treatment may improve response. Eculizumab withdrawal can be contemplated in patients who achieve laboratory and clinical resolution of TA-TMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA