Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 27(1): 81-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37166536

RESUMO

For the control of biofouling, some paints based on compounds that are toxic to marine organisms have been used. There is an intensive search for biodegradable solutions that are friendly to non-target organisms. Bacteria have been shown to be a source of compounds with antifouling potential. In this work, the antifouling activity of a strain of Staphylococcus aureus was evaluated. Extracts activity against biofilm-forming bacteria and the toxicity against Artemia franciscana were evaluated. The extracts were incorporated in a hard gel and a paint matrix, and they were exposed to the sea. In both the laboratory and field, we found that the compounds produced by S. aureus have antifouling activity. The non-toxicity of the tested extracts against Artemia franciscana nauplii suggests that the extracts obtained from S. aureus could have a low ecological impact over non-target organisms. Significant differences were found in the percentage of organisms cover in hard gels with extracts and control. After 90 days, important differences were also observed between the percentage of organisms cover of the paints that contained extracts and the control. Dichloromethane extract is the most effective for the inhibition or delay of the settlement of organisms For this reason, they could be used in matrices with different applications, such as in the shipping industry, aquaculture, or any other in which biofouling is a cause of inconvenience.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Staphylococcus aureus , Biofilmes , Pintura
2.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574976

RESUMO

Biofouling causes major economic losses in the maritime industry. In our site study, the Bay of La Paz (Gulf of California), biofouling on immersed structures is a major problem and is treated mostly with copper-based antifouling paints. Due to the known environmental effect of such treatments, the search for environmentally friendly alternatives in this zone of high biodiversity is a priority to ensure the conservation and protection of species. The aim of this work was to link chemical ecology to marine biotechnology: indeed, the natural defense of macroalgae and sponge was evaluated against biofoulers (biofilm and macrofoulers) from the same geographical zone, and some coatings formulation was done for field assays. Our approach combines in vitro and field bioassays to ensure the selection of the best AF agent prospects. The 1st step consisted of the selection of macroalgae (5 species) and sponges (2 species) with surfaces harboring a low level of colonizers; then extracts were prepared and assayed for toxicity against Artemia, activity towards key marine bacteria involved in biofilm formation in the Bay of La Paz, and the potency to inhibit adhesion of macroorganisms (phenoloxidase assays). The most active and non-toxic extracts were further studied for biofouling activity in the adhesion of the bacteria involved in biofilm formation and through incorporation in marine coatings which were immersed in La Paz Bay during 40 days. In vitro assays demonstrated that extracts of Laurencia gardneri, Sargassum horridum (macroalgae), Haliclona caerulea and Ircinia sp. (sponges) were the most promising. The field test results were of high interest as the best formulation were composed of extracts of H. caerulea and S. horridum and led to a reduction of 32% of biofouling compared with the control.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Biomimética , Desenvolvimento de Medicamentos , Organismos Aquáticos , Bactérias/crescimento & desenvolvimento , Aderência Bacteriana , Biomarcadores , Extratos Celulares/química , Extratos Celulares/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Monofenol Mono-Oxigenase/metabolismo , Alga Marinha/química
3.
Cureus ; 15(5): e38885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37303329

RESUMO

Rays and skates are fish with flattened, pancake-shaped bodies that frequent shallow water, where they often lie hidden under the sand. Some of the batoid species are characterized by a stinger with serrated edges, which is covered by a tegument made up of specialized cells that secrete toxins and enzymes with proteolytic activity. Stingray injuries to humans are common in warm coastal regions. In this report, we present a case of an injury due to the insertion of a barb from a Pacific cownose ray, Rhinoptera steindachneri. We assess the tissue complications due to the retention of the spine in the foot, the subsequent infection that caused tissue necrosis, and the reconstructive surgery performed. Based on previous experience, we highly recommend performing diagnostic procedures such as soft tissue radiographs and MRI to ensure the absence of the barb within the wound and thereby avoid further complications. Current textbook treatment is based on limited scientific studies, case reports, and successful clinical treatment of many victims.

4.
Toxins (Basel) ; 13(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34357978

RESUMO

Allelopathy between phytoplankton species can promote cellular stress and programmed cell death (PCD). The raphidophyte Chattonella marina var. marina, and the dinoflagellates Margalefidinium polykrikoides and Gymnodinium impudicum have allelopathic effects on Gymnodinium catenatum; however, the physiological mechanisms are unknown. We evaluated whether the allelopathic effect promotes cellular stress and activates PCD in G. catenatum. Cultures of G. catenatum were exposed to cell-free media of C. marina var. marina, M. polykrikoides and G. impudicum. The mortality, superoxide radical (O2●-) production, thiobarbituric acid reactive substances (TBARS) levels, superoxide dismutase (SOD) activity, protein content, and caspase-3 activity were quantified. Mortality (between 57 and 79%) was registered in G. catenatum after exposure to cell-free media of the three species. The maximal O2●- production occurred with C. marina var. marina cell-free media. The highest TBARS levels and SOD activity in G. catenatum were recorded with cell-free media from G. impudicum. The highest protein content was recorded with cell-free media from M. polykrikoides. All cell-free media caused an increase in the activity of caspase-3. These results indicate that the allelopathic effect in G. catenatum promotes cell stress and caspase-3 activation, as a signal for the induction of programmed cell death.


Assuntos
Alelopatia/fisiologia , Dinoflagellida , Toxinas Marinhas/toxicidade , Estresse Fisiológico/fisiologia , Morte Celular , Fitoplâncton , Superóxidos
5.
J Biomol Struct Dyn ; 39(4): 1271-1283, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32159448

RESUMO

The number of patients diagnosed with Alzheimer's disease (AD) increases each year, and there are currently few treatment strategies to decrease the symptoms of AD; furthermore, these strategies are not sufficient to reduce memory loss in AD patients. In this work, in vitro and in silico studies were performed to evaluate the effects of fucosterol, which was extracted from an algal source and characterized by liquid chromatography-mass spectra (LC-MS), as an inhibitor of Aß1-42 aggregation. Experimental studies, including protein gel electrophoresis, atomic force microscopy and fluorescence studies with thioflavin T (ThT), highlighted that fucosterol can decrease oligomer formation more than galantamine, which was used as a positive control. Docking and molecular dynamics simulations coupled with an MMGBSA approach showed that fucosterol is capable of recognizing the hydrophobic regions of monomeric Aß1-42, suggesting that fucosterol could affect amyloid-beta (Aß1-42) aggregation by preventing the formation of oligomers, preventing the development of AD.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Sargassum , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Humanos , Fragmentos de Peptídeos , Estigmasterol/análogos & derivados
6.
Toxicon ; 187: 129-135, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32916140

RESUMO

Ocean organisms live in competitive environments that demand the production of poisons and toxins. In some cases, these substances have been used in the pharmaceutical industry for human disease treatments. Most fish poisons generally have potent cytolytic activity, probably through cardiovascular and neuromuscular effects. In the case of marine stingrays, the injuries made by their tail venom apparatus are caused by the mechanical penetration of their sting and a subsequent venom release. This study focused on the evaluation of substances with cytotoxic activity in the epithelium that covers the venom apparatus from the marine stingray Hypanus dipterurus. To demonstrate the above, the hemolytic, proteolytic and cytotoxic capacities of H. dipterurus epithelium substances were determined. Discs impregnated with epithelial extract were used on blood agar plates. The proteolytic activity was analyzed using casein as substrate and for gelatin the liquefaction activity test. To determine the cytotoxicity degree of the extracts, the proliferation and cell viability MTT bioassay was implemented on human cervical carcinoma cells (HeLa). The results showed that no hemolytic or proteolytic activity existed against casein associated with the epithelial extract, but gelatin hydrolysis and cytotoxic activity against the HeLa cell line were observed. This study concludes that the substances found in the epithelium covering the H. dipterurus stingray venom apparatus are a mixture of various proteins, among which, glycosylated anionic proteins represent a potential source of molecules with cytotoxic and hydrolytic activity.


Assuntos
Venenos de Peixe , Rajidae , Animais , Células Epiteliais , Células HeLa , Hemólise , Humanos
7.
Int. microbiol ; 27(1): 81-90, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS (Espanha) | ID: ibc-230245

RESUMO

For the control of biofouling, some paints based on compounds that are toxic to marine organisms have been used. There is an intensive search for biodegradable solutions that are friendly to non-target organisms. Bacteria have been shown to be a source of compounds with antifouling potential. In this work, the antifouling activity of a strain of Staphylococcus aureus was evaluated. Extracts activity against biofilm-forming bacteria and the toxicity against Artemia franciscana were evaluated. The extracts were incorporated in a hard gel and a paint matrix, and they were exposed to the sea. In both the laboratory and field, we found that the compounds produced by S. aureus have antifouling activity. The non-toxicity of the tested extracts against Artemia franciscana nauplii suggests that the extracts obtained from S. aureus could have a low ecological impact over non-target organisms. Significant differences were found in the percentage of organisms cover in hard gels with extracts and control. After 90 days, important differences were also observed between the percentage of organisms cover of the paints that contained extracts and the control. Dichloromethane extract is the most effective for the inhibition or delay of the settlement of organisms For this reason, they could be used in matrices with different applications, such as in the shipping industry, aquaculture, or any other in which biofouling is a cause of inconvenience.(AU)


Assuntos
Humanos , Staphylococcus aureus/química , Incrustação Biológica , Meio Ambiente , Biofilmes , Pintura/toxicidade , Microbiologia , Técnicas Microbiológicas , Toxicidade , Pintura/microbiologia
8.
Org Med Chem Lett ; 4(1): 8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26548986

RESUMO

BACKGROUND: The current investigation sought to explore the nature of the secondary metabolites in the algae, Laurencia pacifica. RESULTS: This report details the first isolation of the sesquiterpenes isoaplysin (1), isolaurenisol (2), debromoisolaurinterol (3), debromoaplysinol (4), laur-11-en-10-ol (5), 10α-hydroxyldebromoepiaplysin (6), and the previously unknown 10-bromo-3,7,11,11-tetramethylspiro[5.5]undeca-1,7-dien-3-ol (7) from the algae, Laurencia pacifica. Isoaplysin (1) and debromoaplysinol (4) showed promising levels of growth inhibition against a panel cancer-derived cell lines of colon (HT29), glioblastoma (U87, SJ-G2), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (Du145), neuroblastoma (BE2-C), pancreas (MIA), murine glioblastoma (SMA) origin with average GI50 values of 23 and 14 µM. CONCLUSIONS: Isoaplysin (1) and debromoaplysinol (4) were up to fourfold more potent in cancer-derived cell populations than in non-tumor-derived normal cells (MCF10A). These analogues are promising candidates for anticancer drug development. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA