Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brain Behav Immun ; 59: 1-7, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26975888

RESUMO

A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health.


Assuntos
Envelhecimento/psicologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Doenças do Sistema Endócrino/patologia , Doenças do Sistema Endócrino/psicologia , Microglia/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Humanos , Inflamação/patologia , Inflamação/psicologia
2.
Brain Behav Immun ; 54: 95-109, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26774527

RESUMO

Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1ß in astrocytes and MHCII and IL-1ß in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1ß, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is a major risk factor in development of neuropsychiatric problems long after injury, negatively affecting quality of life. Mounting evidence indicates that inflammatory processes worsen with time after a brain injury and are likely mediated by glia. Here, we show that primed microglia and astrocytes developed in mice 1 month following moderate diffuse TBI, coinciding with cognitive deficits that were not initially evident after injury. Additionally, TBI-induced glial priming may adversely affect the ability of glia to appropriately respond to immune challenges, which occur regularly across the lifespan. Indeed, we show that an acute immune challenge augmented microglial reactivity and cognitive deficits. This idea may provide new avenues of clinical assessments and treatments following TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Mediadores da Inflamação/metabolismo , Microglia/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas Difusas/imunologia , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Quimiocinas/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia/metabolismo , Qualidade de Vida
3.
Acta Neuropathol ; 124(6): 847-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22933014

RESUMO

Multiple sclerosis (MS) is characterized by episodes of inflammatory demyelination with progressive failure of remyelination. Prior studies using murine models of MS indicate that remyelination within the adult central nervous system (CNS) requires the expression and activity of TNFR2 and CXCR4 by oligodendrocyte progenitor cells (OPCs), promoting their proliferation and differentiation into mature oligodendrocytes. Here, we extend these studies by examining the role of TNFR2 in the expression of the CXCR4 ligand, CXCL12, within the corpus callosum (CC) during cuprizone (CPZ) intoxication and by demonstrating that lentiviral-mediated gene delivery of CXCL12 to the demyelinated CC improves OPC proliferation and myelin expression during remyelination. Activated astrocytes and microglia express both TNFR1 and TNFR2 within the demyelinated CC. However, CPZ intoxicated TNFR2-/- mice exhibit loss of up-regulation of CXCL12 in astrocytes with concomitant decreases in numbers of CXCR4+ NG2+ OPCs within the CC. While CXCR4 antagonism does not affect OPC migration from subventricular zones into the CC, it decreases their proliferation and differentiation within the CC. Stereotactic delivery of lentivirus expressing CXCL12 protein into the CC of acutely demyelinated TNFR2-/- mice increases OPC proliferation and expression of myelin. In contrast, chronically demyelinated wild-type mice, which exhibit significant loss of astrocytes and OPCs, are unable to be rescued via CXCL12 lentivirus alone but instead required engraftment of CXCL12-expressing astrocytes for increased myelin expression. Our results show that TNFR2 activation induces CXCL12 expression in the demyelinated CC via autocrine signaling specifically within astrocytes, which promotes OPC proliferation and differentiation. In addition, gene delivery of critical pro-myelinating proteins might be a feasible approach for the treatment of remyelination failure in MS.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Quimiocina CXCL12/metabolismo , Oligodendroglia/citologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Células-Tronco/citologia , Envelhecimento , Animais , Astrócitos/imunologia , Diferenciação Celular , Proliferação de Células , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Quimiocina CXCL12/imunologia , Corpo Caloso/imunologia , Corpo Caloso/metabolismo , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Bainha de Mielina/imunologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Células-Tronco/metabolismo
4.
Neuropharmacology ; 96(Pt A): 29-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25445485

RESUMO

Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.


Assuntos
Envelhecimento , Lesões Encefálicas/imunologia , Encefalite/imunologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Astrócitos/imunologia , Lesões Encefálicas/complicações , Traumatismos Craniocerebrais/complicações , Traumatismos Craniocerebrais/imunologia , Encefalite/complicações , Humanos , Comportamento de Doença/fisiologia , Mediadores da Inflamação/imunologia , Masculino , Doenças Neurodegenerativas/complicações , Plasticidade Neuronal
5.
J Neurotrauma ; 32(2): 127-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25070744

RESUMO

Traumatic brain injury (TBI) is associated with cerebral edema, blood brain barrier breakdown, and neuroinflammation that contribute to the degree of injury severity and functional recovery. Unfortunately, there are no effective proactive treatments for limiting immediate or long-term consequences of TBI. Therefore, the objective of this study was to determine the efficacy of methylene blue (MB), an antioxidant agent, in reducing inflammation and behavioral complications associated with a diffuse brain injury. Here we show that immediate MB infusion (intravenous; 15-30 minutes after TBI) reduced cerebral edema, attenuated microglial activation and reduced neuroinflammation, and improved behavioral recovery after midline fluid percussion injury in mice. Specifically, TBI-associated edema and inflammatory gene expression in the hippocampus were significantly reduced by MB at 1 d post injury. Moreover, MB intervention attenuated TBI-induced inflammatory gene expression (interleukin [IL]-1ß, tumor necrosis factor α) in enriched microglia/macrophages 1 d post injury. Cell culture experiments with lipopolysaccharide-activated BV2 microglia confirmed that MB treatment directly reduced IL-1ß and increased IL-10 messenger ribonucleic acid in microglia. Last, functional recovery and depressive-like behavior were assessed up to one week after TBI. MB intervention did not prevent TBI-induced reductions in body weight or motor coordination 1-7 d post injury. Nonetheless, MB attenuated the development of acute depressive-like behavior at 7 d post injury. Taken together, immediate intervention with MB was effective in reducing neuroinflammation and improving behavioral recovery after diffuse brain injury. Thus, MB intervention may reduce life-threatening complications of TBI, including edema and neuroinflammation, and protect against the development of neuropsychiatric complications.


Assuntos
Comportamento Animal/efeitos dos fármacos , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas/complicações , Depressão/tratamento farmacológico , Inflamação/tratamento farmacológico , Azul de Metileno/uso terapêutico , Animais , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Azul de Metileno/farmacologia , Camundongos , Microglia/patologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Exp Biol Med (Maywood) ; 237(10): 1129-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23019604

RESUMO

Neuroinflammation is known to elicit numerous changes in brain physiology and is associated with various pathologies, including neurodegenerative diseases, and behaviors, such as sleep and acute illness. In addition, there is accumulating evidence that the behavioral response to alcohol is affected by perturbations to the neuroimmune system. Recent studies have shown that administration of proinflammatory mediators increases alcohol consumption, while anti-inflammatory drugs, such as minocycline, decrease consumption. Doxycycline is an anti-inflammatory mediator and a tetracycline derivative, and is commonly used in the tetracycline regulatory system, a transgenic approach widely accredited for its inducible and reversible nature. Given the established link between anti-inflammatory agents and response to and consumption of alcohol, and because the tetracycline regulatory system is becoming increasingly employed for genetic manipulations and behavioral phenotyping, we investigated the effect of doxycycline administration on alcohol sensitivity and consumption. Two independent transgenic lines containing a tetracycline transactivator transgene or the tetracycline operator promoter insertion, along with wild-type littermate mice (C57Bl/6J), were used to measure changes in alcohol consumption, alcohol-induced motor impairment and sedation, and blood alcohol concentration with doxycycline administration (40 mg/kg in chow). Using repeated sessions of the drinking-in-the-dark paradigm, we found that doxycycline consistently reduced consumption of 20% alcohol during two- and four-hour access. Doxycycline also increased sensitivity to the motor-impairing effects of alcohol (2 g/kg), and the duration of loss of righting reflex after ethanol injection (3.5 g/kg), without causing a significant alteration in blood alcohol levels. Despite the many advantages of using a tetracycline-regulated transgenic approach, it is important to consider the effects of doxycycline administration in behaviors that may be influenced by neuroinflammation, including alcohol behaviors.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Doxiciclina/farmacologia , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/psicologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Doxiciclina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Tetraciclina/farmacologia , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA