RESUMO
The expression of the Na+-K+-2Cl- cotransporter (NKCC), widely associated with cell volume regulation, has never been directly demonstrated in annelids. Its putative presence was firstly recovered in silico, and then using immunofluorescence, its signal was retrieved for the first time in different tissues of four species of estuarine annelids from southern Brazil that are regularly subjected to salinity fluctuations. We tested two euryhaline species (wide salinity tolerance), the nereidids Alitta yarae and Laeonereis acuta (habitat salinity: ~10-28 psu), and two stenohaline species (restricted salinity tolerance), the nephtyid Nephtys fluviatilis (habitat salinity: ~6-10 psu), and the melinnid Isolda pulchella (habitat salinity: ~28-35 psu). All four species showed specific immunofluorescent labelling for NKCC-like expression. However, the expression of an NKCC-like protein was not homogeneous among them. The free-living/burrowers (both euryhaline nereidids and the stenohaline nephtyid) displayed a widespread signal for an NKCC-like protein along their bodies, in contrast to the stenohaline sedentary melinnid, in which the signal was restricted to the branchiae and the internal tissues of the body. The results are compatible with NKCC involvement in cell volume, especially in annelids that face wide variations in salinity in their habitats.
RESUMO
The importance of aquaporins (AQPs) in the transport of water and solutes through cell membranes is well recognized despite being relatively new. To date, despite their abundance, diversity, and presence in disparate environments, amphipods have only been mentioned in studies about the AQPs of other animals and have never been further investigated. In this work, we aimed to recover from public data available AQPs of these crustaceans and reconstruct phylogenetic affinities. We first performed BLAST searches with several queries of diverse taxa against different NCBI databases. Then, we selected the clades of AQPs retrieving the amphipod superfamily Gammaroidea as monophyletic and ran phylogenetic analyses to assess their performances. Our results show how most of the AQPs of amphipods are similar to those of other crustaceans, despite the Prip-like displayed different paralogs, and report for the first time a putative Aqp8-like for arthropods. We also found that the candidate genes of Prip-like, Bib-like, Aqp12-like, and Glp-like help solve deeper relationships in phylogenies of amphipods while leaving uncertainties in shallower parts. With our findings, we hope to increase attention to the study of amphipods as models for AQP functioning and evolution.
Assuntos
Anfípodes/metabolismo , Aquaporinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aquaporinas/química , Sequência Conservada , Humanos , Funções Verossimilhança , Filogenia , Estrutura Secundária de ProteínaRESUMO
Aquaporins (AQPs) are a family of membrane channels facilitating diffusion of water and small solutes into and out of cells. Despite their biological relevance in osmoregulation and ubiquitous distribution throughout metazoans, the presence of AQPs in annelids has been poorly investigated. Here, we searched and annotated Aqp sequences in public genomes and transcriptomes of annelids, inferred their evolutionary relationships through phylogenetic analyses and discussed their putative physiological relevance. We identified a total of 401 Aqp sequences in 27 annelid species, including 367 sequences previously unrecognized as Aqps. Similar to vertebrates, phylogenetic tree reconstructions clustered these annelid Aqps in four clades: AQP1-like, AQP3-like, AQP8-like and AQP11-like. We found no clear indication of the existence of paralogs exclusive to annelids; however, several gene duplications seem to have occurred in the ancestors of some Sedentaria annelid families, mainly in the AQP1-like clade. Three of the six Aqps annotated in Alitta succinea, an estuarine annelid showing high salinity tolerance, were validated by RT-PCR sequencing, and their similarity to human AQPs was investigated at the level of "key" conserved residues and predicted three-dimensional structure. Our results suggest a diversification of the structures and functions of AQPs in Annelida comparable to that observed in other taxa.