RESUMO
Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight nonenzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors.
Assuntos
Hepatócitos/enzimologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Correpressor 1 de Receptor Nuclear/metabolismo , Transcrição Gênica , Acetilação , Animais , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Perfilação da Expressão Gênica/métodos , Genótipo , Células HEK293 , Hepatócitos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , TransfecçãoRESUMO
The nuclear receptor Rev-erbα regulates circadian rhythm and metabolism, but its effects are modest and it has been considered to be a secondary regulator of the cell-autonomous clock. Here we report that depletion of Rev-erbα together with closely related Rev-erbß has dramatic effects on the cell-autonomous clock as well as hepatic lipid metabolism. Mouse embryonic fibroblasts were rendered arrhythmic by depletion of both Rev-erbs. In mouse livers, Rev-erbß mRNA and protein levels oscillate with a diurnal pattern similar to that of Rev-erbα, and both Rev-erbs are recruited to a remarkably similar set of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast to relatively subtle changes upon loss of either subtype alone. These findings establish the two Rev-erbs as major regulators of both clock function and metabolism, displaying a level of subtype collaboration that is unusual among nuclear receptors but common among core clock proteins, protecting the organism from major perturbations in circadian and metabolic physiology.
Assuntos
Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica , Genoma , Histona Desacetilases/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismoRESUMO
The development and severity of inflammatory bowel diseases and other chronic inflammatory conditions can be influenced by host genetic and environmental factors, including signals derived from commensal bacteria. However, the mechanisms that integrate these diverse cues remain undefined. Here we demonstrate that mice with an intestinal epithelial cell (IEC)-specific deletion of the epigenome-modifying enzyme histone deacetylase 3 (HDAC3(ΔIEC) mice) exhibited extensive dysregulation of IEC-intrinsic gene expression, including decreased basal expression of genes associated with antimicrobial defence. Critically, conventionally housed HDAC3(ΔIEC) mice demonstrated loss of Paneth cells, impaired IEC function and alterations in the composition of intestinal commensal bacteria. In addition, HDAC3(ΔIEC) mice showed significantly increased susceptibility to intestinal damage and inflammation, indicating that epithelial expression of HDAC3 has a central role in maintaining intestinal homeostasis. Re-derivation of HDAC3(ΔIEC) mice into germ-free conditions revealed that dysregulated IEC gene expression, Paneth cell homeostasis and intestinal barrier function were largely restored in the absence of commensal bacteria. Although the specific mechanisms through which IEC-intrinsic HDAC3 expression regulates these complex phenotypes remain to be determined, these data indicate that HDAC3 is a critical factor that integrates commensal-bacteria-derived signals to calibrate epithelial cell responses required to establish normal host-commensal relationships and maintain intestinal homeostasis.
Assuntos
Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Homeostase , Mucosa Intestinal/enzimologia , Intestinos/microbiologia , Simbiose , Adulto , Animais , Bactérias/genética , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Doença de Crohn/enzimologia , Doença de Crohn/genética , Doença de Crohn/microbiologia , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Histona Desacetilases/genética , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , RNA Ribossômico 16S/genética , Transdução de SinaisRESUMO
Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.
Assuntos
Epigênese Genética , Histona Desacetilases/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Animais , Histona Desacetilases/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos , Pneumonia/enzimologia , Pneumonia/imunologia , Pneumonia/parasitologia , Schistosoma mansoni , Células Th2/imunologia , Células Th2/metabolismoRESUMO
Adipose tissue is an important metabolic organ, the dysfunction of which is associated with the development of obesity, diabetes mellitus, and cardiovascular disease. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is considered the master regulator of adipocyte differentiation and function. Although its cell-autonomous role in adipogenesis has been clearly demonstrated in cell culture, previous fat-specific knockouts of the murine PPARγ gene did not demonstrate a dramatic phenotype in vivo. Here, using Adipoq-Cre mice to drive adipose-specific recombination, we report a unique fat-specific PPARγ knockout (PPARγ FKO) mouse model with almost no visible brown and white adipose tissue at age 3 mo. As a consequence, PPARγ FKO mice had hugely enlarged pancreatic islets, massive fatty livers, and dramatically elevated levels of blood glucose and serum insulin accompanied by extreme insulin resistance. PPARγ FKO mice also exhibited delayed hair coat formation associated with absence of dermal fat, disrupted mammary gland development with loss of mammary fat pads, and high bone mass with loss of bone marrow fat, indicating the critical roles of adipose PPARγ in these tissues. Together, our data reveal the necessity of fat PPARγ in adipose formation, whole-body metabolic homeostasis, and normal development of fat-containing tissues.
Assuntos
Adipócitos/metabolismo , Resistência à Insulina/genética , Obesidade/metabolismo , PPAR gama/deficiência , Animais , Compostos Azo , Immunoblotting , Imuno-Histoquímica , Resistência à Insulina/fisiologia , Camundongos , PPAR gama/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microtomografia por Raio-XRESUMO
Sustained Toll-like receptor (TLR) stimulation continuously activates antimicrobial genes but paradoxically represses inflammatory genes. This phenomenon, termed TLR tolerance, is essential for preventing fatal inflammatory conditions such as sepsis, but its underlying mechanisms are unclear. We report here that NF-κB binding nucleic acids of gene promoters are tolerogenic motifs, which selectively recruit an NcoR-Hdac3-deacetylated-p50 repressosome to inflammatory genes. Genome-wide analyses of TLR4-induced genes revealed that NF-κB motifs were the only regulatory elements significantly enriched in tolerizable genes. Mutating the NF-κB motifs of tolerizable genes converted them into nontolerizable ones, whereas inserting NF-κB binding motifs into nontolerizable genes conferred the tolerance. Although NF-κB p50 was essential for assembling the repressosome, genetic disruption of the NcoR-Hdac3 interaction alone was sufficient to completely abolish TLR4 tolerance and to render mice vulnerable to sepsis. Thus, the specificity of TLR tolerance is dictated by evolutionally conserved nucleic acid motifs that bound by NF-κB and the NcoR repressosome.
Assuntos
Tolerância Imunológica/imunologia , Subunidade p50 de NF-kappa B/imunologia , Correpressor 1 de Receptor Nuclear/imunologia , Receptor 4 Toll-Like/imunologia , Acetilação , Motivos de Aminoácidos/imunologia , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Expressão Gênica/imunologia , Histona Desacetilases/imunologia , Histona Desacetilases/metabolismo , Tolerância Imunológica/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Choque Séptico/imunologia , Choque Séptico/prevenção & controle , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Nur77 (NR4A1) and Nor-1 (NR4A3) are highly homologous orphan nuclear receptors that regulate the transcription of overlapping target genes. The transcriptional activity of both proteins is regulated in a ligand-independent manner by cell- and stimulus-specific gene induction and protein phosphorylation. Nor-1 and Nur77 have been implicated in a variety of cellular processes, including the transduction of hormonal, inflammatory, mitogenic, apoptotic and differentiative signals. Cellular responses to these proteins suggest that they may function as homeostatic regulators of proliferation, apoptosis and differentiation, and thus may regulate cellular susceptibility to tumorigenesis. Their physiological functions, however, remain poorly understood. Here we describe a previously unsuspected function of Nor-1 and Nur77-as critical tumor suppressors of myeloid leukemogenesis. The abrogation of these proteins in mice led to rapidly lethal acute myeloid leukemia (AML), involving abnormal expansion of hematopoietic stem cells (HSCs) and myeloid progenitors, decreased expression of the AP-1 transcription factors JunB and c-Jun and defective extrinsic apoptotic (Fas-L and TRAIL) signaling. We found that downregulation of NR4A3 ( NOR-1 ) and NR4A1 ( NUR77 ) was a common feature in leukemic blasts from human AML patients, irrespective of karyotype. Thus Nor-1 and Nur77 may provide potential targets for therapeutic intervention in AML.
Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/fisiologia , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores de Esteroides/deficiência , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/deficiência , Receptores dos Hormônios Tireóideos/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia , Doença Aguda , Animais , Crise Blástica/genética , Crise Blástica/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Humanos , Leucemia Mieloide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/biossíntese , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/antagonistas & inibidores , Receptores dos Hormônios Tireóideos/biossíntese , Receptores dos Hormônios Tireóideos/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
Rhythmic changes in histone acetylation at circadian clock genes suggest that temporal modulation of gene expression is regulated by chromatin modifications. Furthermore, recent studies demonstrate a critical relationship between circadian and metabolic physiology. The nuclear receptor corepressor 1 (Ncor1) functions as an activating subunit for the chromatin modifying enzyme histone deacetylase 3 (Hdac3). Lack of Ncor1 is incompatible with life, and hence it is unknown whether Ncor1, and particularly its regulation of Hdac3, is critical for adult mammalian physiology. Here we show that specific, genetic disruption of the Ncor1-Hdac3 interaction in mice causes aberrant regulation of clock genes and results in abnormal circadian behaviour. These mice are also leaner and more insulin-sensitive owing to increased energy expenditure. Unexpectedly, loss of a functional Ncor1-Hdac3 complex in vivo does not lead to sustained increases in known catabolic genes, but instead significantly alters the oscillatory patterns of several metabolic genes, demonstrating that circadian regulation of metabolism is critical for normal energy balance. These findings indicate that activation of Hdac3 by Ncor1 is a nodal point in the epigenetic regulation of circadian and metabolic physiology.
Assuntos
Ritmo Circadiano/fisiologia , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição ARNTL , Substituição de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Células Cultivadas , Ritmo Circadiano/genética , Dieta , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/genética , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/química , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Obesidade/enzimologia , Obesidade/genética , Obesidade/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genéticaRESUMO
The NR4A subfamily of nuclear receptors (NR4A1, NR4A2, and NR4A3) function as transcription factors that transduce diverse extracellular signals into altered gene transcription to coordinate apoptosis, proliferation, cell cycle arrest, and DNA repair. We previously discovered that 2 of these receptors, NR4A1 and NR4A3, are potent tumor suppressors of acute myeloid leukemia (AML); they are silenced in human AML, and abrogation of both genes in mice leads to rapid postnatal development of AML. Reduced expression of NR4As is also a common feature of myelodysplastic syndromes (MDSs). Here we show that reduced gene dosage of NR4A1 and NR4A3 in hypoallelic (NR4A1(+/-)NR4A3(-/-) or NR4A1(-/-)NR4A3(+/-)) mice below a critical threshold leads to a chronic myeloid malignancy that closely recapitulates the pathologic features of mixed myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) with progression to AML in rare cases. Enhanced proliferation and excessive apoptosis of hematopoietic stem cells and myeloid progenitors, together with elevated DNA damage, contribute to MDS/MPN disease. We identify the myeloid tumor suppressor genes Egr1 and JunB and the DNA damage checkpoint kinase, polo-like kinase 2 (Plk2) as deregulated genes whose disrupted signaling probably contributes to MDS/MPN. These mice provide a novel model to elucidate the molecular pathogenesis of MDS/MPN and for therapeutic evaluation.
Assuntos
Proteínas de Ligação a DNA/genética , Dosagem de Genes/genética , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Alelos , Animais , Apoptose , Compartimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dano ao DNA , Progressão da Doença , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/patologia , Células Progenitoras Mieloides/patologia , Transtornos Mieloproliferativos/patologia , Fenótipo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina QuinasesRESUMO
RATIONALE: The development of the cardiac outflow tract (OFT) and great vessels is a complex process that involves coordinated regulation of multiple progenitor cell populations. Among these populations, neural crest cells make important contributions to OFT formation and aortic arch remodeling. Although numerous signaling pathways, including Notch, have been implicated in this process, the role of epigenetics in OFT development remains largely unexplored. OBJECTIVE: Because histone deacetylases (Hdacs) play important roles in the epigenetic regulation of mammalian development, we have investigated the function of Hdac3, a class I Hdac, during cardiac neural crest development in mouse. METHODS AND RESULTS: Using 2 neural crest drivers, Wnt1-Cre and Pax3(Cre), we show that loss of Hdac3 in neural crest results in perinatal lethality and cardiovascular abnormalities, including interrupted aortic arch type B, aortic arch hypoplasia, double-outlet right ventricle, and ventricular septal defect. Affected embryos are deficient in aortic arch artery smooth muscle during midgestation, despite intact neural crest cell migration and preserved development of other cardiac and truncal neural crest derivatives. The Hdac3-dependent block in smooth muscle differentiation is cell autonomous and is associated with downregulation of the Notch ligand Jagged1, a key driver of smooth muscle differentiation in the aortic arch arteries. CONCLUSIONS: These results indicate that Hdac3 plays a critical and specific regulatory role in the neural crest-derived smooth muscle lineage and in formation of the OFT.
Assuntos
Coração Fetal/enzimologia , Cardiopatias Congênitas/enzimologia , Histona Desacetilases/fisiologia , Músculo Liso/patologia , Crista Neural/patologia , Timo/anormalidades , Medula Suprarrenal/embriologia , Animais , Aorta Torácica/anormalidades , Diferenciação Celular/fisiologia , Linhagem da Célula , Movimento Celular , Dupla Via de Saída do Ventrículo Direito/embriologia , Dupla Via de Saída do Ventrículo Direito/enzimologia , Dupla Via de Saída do Ventrículo Direito/genética , Feminino , Coração Fetal/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Comunicação Interventricular/embriologia , Comunicação Interventricular/enzimologia , Comunicação Interventricular/genética , Ventrículos do Coração/embriologia , Ventrículos do Coração/enzimologia , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Masculino , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/fisiologia , Receptores Notch/fisiologia , Proteína Wnt1/fisiologiaRESUMO
Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyltranserases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3-FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3-FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3-FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation.
Assuntos
Benzamidas/farmacologia , Histona Desacetilases/fisiologia , Memória de Longo Prazo/fisiologia , Acetilação , Animais , Hipocampo/enzimologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Histonas/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Deleção de Sequência , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologiaRESUMO
Many human diseases result from the influence of the nutritional environment on gene expression. The environment interacts with the genome by altering the epigenome, including covalent modification of nucleosomal histones. Here, we report a novel and dramatic influence of diet on the phenotype and survival of mice in which histone deacetylase 3 (Hdac3) is deleted postnatally in heart and skeletal muscle. Although embryonic deletion of myocardial Hdac3 causes major cardiomyopathy that reduces survival, we found that excision of Hdac3 in heart and muscle later in development leads to a much milder phenotype and does not reduce survival when mice are fed normal chow. Remarkably, upon switching to a high fat diet, the mice begin to die within weeks and display signs of severe hypertrophic cardiomyopathy and heart failure. Down-regulation of myocardial mitochondrial bioenergetic genes, specifically those involved in lipid metabolism, precedes the full development of cardiomyopathy, suggesting that HDAC3 is important in maintaining proper mitochondrial function. These data suggest that loss of the epigenomic modifier HDAC3 causes dietary lethality by compromising the ability of cardiac mitochondria to respond to changes of nutritional environment. In addition, this study provides a mouse model for diet-inducible heart failure.
Assuntos
Dieta/efeitos adversos , Deleção de Genes , Histona Desacetilases/genética , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Animais , Animais Recém-Nascidos , Gorduras na Dieta/efeitos adversos , Ecocardiografia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Histona Desacetilases/metabolismo , Humanos , Integrases/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiopatologiaRESUMO
Adipocyte differentiation is controlled by many transcription factors, but few known downstream targets of these factors are necessary for adipogenesis. Here we report that retinol saturase (RetSat), which is an enzyme implicated in the generation of dihydroretinoid metabolites, is induced during adipogenesis and is directly regulated by the transcription factor peroxisome proliferator activated receptor gamma (PPARgamma). Ablation of RetSat dramatically inhibited adipogenesis but, surprisingly, this block was not overcome by the putative product of RetSat enzymatic activity. On the other hand, ectopic RetSat with an intact, but not a mutated, FAD/NAD dinucleotide-binding motif increased endogenous PPARgamma transcriptional activity and promoted adipogenesis. Indeed, RetSat was not required for adipogenesis when cells were provided with exogenous PPARgamma ligands. In adipose tissue, RetSat is expressed in adipocytes but is unexpectedly downregulated in obesity, most likely owing to infiltration of macrophages that we demonstrate to repress RetSat expression. Thiazolidinedione treatment reversed low RetSat expression in adipose tissue of obese mice. Thus, RetSat plays an important role in the biology of adipocytes, where it favors normal differentiation, yet is reduced in the obese state. RetSat is thus a novel target for therapeutic intervention in metabolic disease.
Assuntos
Adipogenia , Regulação para Baixo/genética , Obesidade/enzimologia , Obesidade/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/enzimologia , Animais , Sequência de Bases , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Ativação Enzimática , Indução Enzimática , Feminino , Humanos , Íntrons/genética , Camundongos , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Obesidade/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , PPAR gama/metabolismo , Elementos de Resposta/genética , Transcrição Gênica , Vitamina A/análogos & derivados , Vitamina A/metabolismoRESUMO
Growth differentiation factor-15 (GDF15) is a circulating protein that has been implicated in multiple biological processes, including energy homeostasis, body weight regulation, and cachexia driven by cancer and chronic disease. The potential to target GDF15 in the treatment of energy-intake disorders, including obesity and anorexia, is an area of intense investigation, but has been limited by the lack of an identified receptor, signaling mechanism, and target tissue. GDNF family receptor α-like (GFRAL) was recently identified as the neuronal brainstem receptor responsible for mediating the anorectic actions of GDF15. Herein, we provide a brief overview of GDF15 biology with a focus on energy homeostasis, and highlight the implications of the recent receptor identification to this field and beyond.
Assuntos
Anorexia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator 15 de Diferenciação de Crescimento , Obesidade , Animais , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/agonistas , Fator 15 de Diferenciação de Crescimento/antagonistas & inibidores , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismoRESUMO
Growth differentiation factor 15 (GDF15), a distant member of the transforming growth factor (TGF)-ß family, is a secreted protein that circulates as a 25-kDa dimer. In humans, elevated GDF15 correlates with weight loss, and the administration of GDF15 to mice with obesity reduces body weight, at least in part, by decreasing food intake. The mechanisms through which GDF15 reduces body weight remain poorly understood, because the cognate receptor for GDF15 is unknown. Here we show that recombinant GDF15 induces weight loss in mice fed a high-fat diet and in nonhuman primates with spontaneous obesity. Furthermore, we find that GDF15 binds with high affinity to GDNF family receptor α-like (GFRAL), a distant relative of receptors for a distinct class of the TGF-ß superfamily ligands. Gfral is expressed in neurons of the area postrema and nucleus of the solitary tract in mice and humans, and genetic deletion of the receptor abrogates the ability of GDF15 to decrease food intake and body weight in mice. In addition, diet-induced obesity and insulin resistance are exacerbated in GFRAL-deficient mice, suggesting a homeostatic role for this receptor in metabolism. Finally, we demonstrate that GDF15-induced cell signaling requires the interaction of GFRAL with the coreceptor RET. Our data identify GFRAL as a new regulator of body weight and as the bona fide receptor mediating the metabolic effects of GDF15, enabling a more comprehensive assessment of GDF15 as a potential pharmacotherapy for the treatment of obesity.
Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/genética , Obesidade/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Macaca fascicularis , Camundongos , Camundongos Knockout , Redução de Peso/genéticaRESUMO
Obesity causes insulin resistance, and PPARγ ligands such as rosiglitazone are insulin sensitizing, yet the mechanisms remain unclear. In C57BL/6 (B6) mice, obesity induced by a high-fat diet (HFD) has major effects on visceral epididymal adipose tissue (eWAT). Here, we report that HFD-induced obesity in B6 mice also altered the activity of gene regulatory elements and genome-wide occupancy of PPARγ. Rosiglitazone treatment restored insulin sensitivity in obese B6 mice, yet, surprisingly, had little effect on gene expression in eWAT. However, in subcutaneous inguinal fat (iWAT), rosiglitazone markedly induced molecular signatures of brown fat, including the key thermogenic gene Ucp1. Obesity-resistant 129S1/SvImJ mice (129 mice) displayed iWAT browning, even in the absence of rosiglitazone. The 129 Ucp1 locus had increased PPARγ binding and gene expression that were preserved in the iWAT of B6x129 F1-intercrossed mice, with an imbalance favoring the 129-derived alleles, demonstrating a cis-acting genetic difference. Thus, B6 mice have genetically defective Ucp1 expression in iWAT. However, when Ucp1 was activated by rosiglitazone, or by iWAT browning in cold-exposed or young mice, expression of the B6 version of Ucp1 was no longer defective relative to the 129 version, indicating epigenomic rescue. These results provide a framework for understanding how environmental influences like drugs can affect the epigenome and potentially rescue genetically determined disease phenotypes.
Assuntos
Epigênese Genética , Obesidade/metabolismo , PPAR gama/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Ligação Proteica , Elementos Reguladores de Transcrição , Rosiglitazona , Gordura Subcutânea Abdominal/metabolismo , Tiazolidinedionas/farmacologia , Ativação Transcricional , Transcriptoma , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismoRESUMO
Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti-inflammatory wound healing characteristics and showed improved lipid handling. The pro-fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro-fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease.
Assuntos
Aterosclerose/genética , Histona Desacetilases/fisiologia , Macrófagos/fisiologia , Acetilação , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Colágeno/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Assuntos
Receptores Nucleares Órfãos/metabolismo , Fatores de Transcrição/metabolismo , Animais , HumanosRESUMO
Adipose-specific gene deletion in mice is crucial in determining gene function in adipocyte homeostasis and the development of obesity. We noted 100% mortality when the Hdac3 gene was conditionally deleted using Fabp4-Cre mice, the most commonly used model of adipose-targeted Cre recombinase. However, this surprising result was not reproduced using other models of adipose targeting of Cre, including a novel Retn-Cre mouse. These findings underscore the need for caution when interpreting data obtained using Fabp4-Cre mice and should encourage the use of additional or alternative adipose-targeting Cre mouse models before drawing conclusions about in vivo adipocyte-specific functions.
Assuntos
Tecido Adiposo/enzimologia , Modelos Animais de Doenças , Deleção de Genes , Histona Desacetilases/genética , Obesidade/enzimologia , Tecido Adiposo/fisiopatologia , Animais , Epididimo/enzimologia , Epididimo/fisiopatologia , Proteínas de Ligação a Ácido Graxo/genética , Genes Letais , Engenharia Genética , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/genética , Especificidade de Órgãos , FenótipoRESUMO
Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.