RESUMO
The F1 motor is a rotating molecular motor that ensures a tight chemomechanical coupling between ATP hydrolysis/synthesis reactions and rotation steps. However, the mechanism underlying this tight coupling remains to be elucidated. In this study, we used electrorotation in single-molecule experiments using an F1ßE190D mutant to demonstrate that the stall torque was significantly smaller than the wild-type F1, indicating a loose coupling of this mutant, despite showing similar stepping torque as the wild-type. Experiments on the ATPase activity after heat treatment and gel filtration of the α3ß3-subcomplex revealed the unstable structure of the ßE190D mutant. Our results suggest that the tight chemomechanical coupling of the F1 motor relies on the structural stability of F1. We also discuss the difference between the stepping torque and the stall torque.
Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , Hidrólise , ATPases Translocadoras de Prótons/metabolismo , Rotação , TorqueRESUMO
Proteorhodopsin (PR) is an outward light-driven proton pump observed in marine eubacteria. Despite many structural and functional similarities to bacteriorhodopsin (BR) in archaea, which also acts as an outward proton pump, the mechanism of the photoinduced proton release and uptake is different between two H(+)-pumps. In this study, we investigated the pH dependence of the photocycle and proton transfer in PR reconstituted with the phospholipid membrane under alkaline conditions. Under these conditions, as the medium pH increased, a blue-shifted photoproduct (defined as Ma), which is different from M, with a pKa of ca. 9.2 was produced. The sequence of the photoinduced proton uptake and release during the photocycle was inverted with the increase in pH. A pKa value of ca. 9.5 was estimated for this inversion and was in good agreement with the pKa value of the formation of Ma (â¼ 9.2). In addition, we measured the photoelectric current generated by PRs attached to a thin polymer film at varying pH. Interestingly, increases in the medium pH evoked bidirectional photocurrents, which may imply a possible reversal of the direction of the proton movement at alkaline pH. On the basis of these findings, a putative photocycle and proton transfer scheme in PR under alkaline pH conditions was proposed.
Assuntos
Proteínas de Bactérias/metabolismo , Modelos Moleculares , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Algoritmos , Substituição de Aminoácidos , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise/efeitos da radiação , Transporte Biológico/efeitos da radiação , Eubacterium/metabolismo , Eubacterium/efeitos da radiação , Gammaproteobacteria/metabolismo , Gammaproteobacteria/efeitos da radiação , Halobacterium salinarum/metabolismo , Halobacterium salinarum/efeitos da radiação , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Bicamadas Lipídicas/química , Membranas Artificiais , Mutação , Fosfatidilcolinas/química , Processos Fotoquímicos , Bombas de Próton/química , Bombas de Próton/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genéticaRESUMO
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
Assuntos
Enterococcus/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Trifosfato de Adenosina/química , Catálise , Escherichia coli/enzimologia , Hidrólise , Cinética , Proteínas Motores Moleculares/química , Proteínas Recombinantes/química , Sódio/química , Thermus thermophilus/enzimologia , TorqueRESUMO
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 µM at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 µM ATP (<
Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Enterococcus/enzimologia , Modelos Moleculares , ATPases Vacuolares Próton-Translocadoras/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Enterococcus/genética , Cinética , Estrutura Quaternária de Proteína , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward â¼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for â¼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(B)T of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.
Assuntos
Actinas/metabolismo , Galinhas/fisiologia , Proteínas Motores Moleculares/metabolismo , Miosina Tipo V/metabolismo , Actinas/química , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Microscopia de Fluorescência , Proteínas Motores Moleculares/química , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Miosina Tipo V/química , Ligação Proteica , Conformação ProteicaRESUMO
F(1)-ATPase is a nanosized biological energy transducer working as part of F(o)F(1)-ATP synthase. Its rotary machinery transduces energy between chemical free energy and mechanical work and plays a central role in the cellular energy transduction by synthesizing most ATP in virtually all organisms. However, information about its energetics is limited compared to that of the reaction scheme. Actually, fundamental questions such as how efficiently F(1)-ATPase transduces free energy remain unanswered. Here, we demonstrated reversible rotations of isolated F(1)-ATPase in discrete 120° steps by precisely controlling both the external torque and the chemical potential of ATP hydrolysis as a model system of F(o)F(1)-ATP synthase. We found that the maximum work performed by F(1)-ATPase per 120° step is nearly equal to the thermodynamical maximum work that can be extracted from a single ATP hydrolysis under a broad range of conditions. Our results suggested a 100% free-energy transduction efficiency and a tight mechanochemical coupling of F(1)-ATPase.
Assuntos
ATPases Translocadoras de Prótons/metabolismo , Termodinâmica , Trifosfato de Adenosina/metabolismo , HidróliseRESUMO
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a ßY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a ßE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric ßY341W subunit and a mutant α3ß3γ subcomplex containing the ßY341W mutation with or without an additional ßE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated ß subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van't Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated ß subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH(0) and ΔG(0) values at 25°C. The binding of nucleotides with different bases to the isolated ß subunit resulted in different entropy changes. Interestingly, NDP binding to the α3ß(Y341W)3γ subcomplex had similar Kd and ΔG(0) values as binding to the isolated ß(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.
Assuntos
ATPases Bacterianas Próton-Translocadoras/química , Modelos Biológicos , Nucleotídeos/metabolismo , Termodinâmica , Bacillus/enzimologia , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Cinética , Mutação de Sentido Incorreto , Nucleotídeos/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismoRESUMO
In this study, we analyzed the photoelectric current generated by bacteriorhodopsin adsorbed on a polymer film, "Lumirror" (Muneyuki et al. in FEBS Lett 427:109-114, 1998). We could examine the photoelectric current over a wide range of light intensity and pH values using the same membrane owing to the mechanical and chemical stability of the thin polymer film. We analyzed the photoelectric current by comparison with a simple equivalent electric circuit. Analysis of experimental results obtained at different light intensities suggested that the electromotive force of the bacteriorhodopsin was independent of light intensity. The pH dependence of the photoelectric current suggested that the bacteriorhodopsin could generate a maximum electromotive force at approximately pH 6.
Assuntos
Bacteriorodopsinas/metabolismo , Condutividade Elétrica , Adsorção , Bacteriorodopsinas/química , Relação Dose-Resposta à Radiação , Concentração de Íons de Hidrogênio , LuzRESUMO
F1-ATPase, the catalytic part of FoF1-ATP synthase, rotates the central gamma subunit within the alpha3beta3 cylinder in 120 degrees steps, each step consuming a single ATP molecule. However, how the catalytic activity of each beta subunit is coordinated with the other two beta subunits to drive rotation remains unknown. Here we show that hybrid F1 containing one or two mutant beta subunits with altered catalytic kinetics rotates in an asymmetric stepwise fashion. Analysis of the rotations reveals that for any given beta subunit, the subunit binds ATP at 0 degrees, cleaves ATP at approximately 200 degrees and carries out a third catalytic event at approximately 320 degrees. This demonstrates the concerted nature of the F1 complex activity, where all three beta subunits participate to drive each 120 degrees rotation of the gamma subunit with a 120 degrees phase difference, a process we describe as a 'sequential three-site mechanism'.
Assuntos
ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , ATPases Translocadoras de Prótons/químicaRESUMO
We have developed a new fabrication method for a ring structure of assembled nanoparticles on a gold surface by the use of continuous Nd:YAG laser light. A micronanobubble on a gold surface, created by laser local heating, acts as a template for the formation of the ring structure. Both Marangoni convection flow and capillary flow around the micronanobubble are responsible for the driving force to assemble nanoparticles such as CdSe Q-dots into the ring structure from the solution. Because a single micronanobubble was generated by the Nd:YAG laser focusing point, the precise positioning of the ring structure was feasible directly on the gold surface, which makes it possible to fabricate various patterns of rings such as arrays and letters and even a double-ring structure without any photomasks or any templates.
Assuntos
Ouro/química , Lasers , Microtecnologia/métodos , Nanopartículas/química , Nanotecnologia/métodos , Propriedades de SuperfícieRESUMO
F(1)-ATPase is a rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of alpha(3)beta(3) subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting gamma angle defined as 0 degrees , phosphate is released at approximately 200 degrees , and ADP is released during quick rotation between 240 degrees and 320 degrees that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.
Assuntos
Biofísica/métodos , ATPases Translocadoras de Prótons/química , Espectrometria de Fluorescência/métodos , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalização , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Hidrólise , Cinética , Oxigênio/química , Estresse MecânicoRESUMO
Molecular motors drive mechanical motions utilizing the free energy liberated from chemical reactions such as ATP hydrolysis. Although it is essential to know the efficiency of this free energy transduction, it has been a challenge due to the system's microscopic scale. Here, we evaluate the single-molecule energetics of a rotary molecular motor, F1-ATPase, by applying a recently derived nonequilibrium equality together with an electrorotation method. We show that the sum of the heat flow through the probe's rotational degree of freedom and the work against an external load is almost equal to the free energy change per a single ATP hydrolysis under various conditions. This implies that F1-ATPase works at an efficiency of nearly 100% in a thermally fluctuating environment.
Assuntos
Ensaios Enzimáticos/métodos , ATPases Translocadoras de Prótons/metabolismo , Bacillus/enzimologia , Eletricidade , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , ATPases Translocadoras de Prótons/química , Rotação , TermodinâmicaRESUMO
Effect of epsilon subunit on the nucleotide binding to the catalytic sites of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been tested by using alpha(3)beta(3)gamma and alpha(3)beta(3)gammaepsilon complexes of TF(1) containing betaTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the epsilon subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the epsilon subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.
Assuntos
Trifosfato de Adenosina/biossíntese , Bacillus/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , ATPases Translocadoras de Prótons/químicaRESUMO
An electrochemical cell was previously reported in which bacteriorhodopsin (BR, purple membrane) was adsorbed on the surface of a transparent SnO(2) electrode, and illumination resulted in potential or current changes (Koyama et al., Science 265:762-765, 1994; Robertson and Lukashev, Biophys. J. 68:1507-1517, 1995; Koyama et al., Photochem. Photobiol. 68:400-406, 1998). In this paper, we concluded that pH changes caused by proton transfer by the deposited BR or proteorhodopsin (PR) films lead to the flash-induced potential change in the SnO(2) electrode. Thus, the signals originate from BR and PR acting as light-driven proton pumps. This conclusion was drawn from the following observations. (1) The relation between the potential of a bare electrode and pH is linear for a wide pH range. (2) The flash-induced potential changes decrease with an increase in the buffer concentration. (3) The action spectrum of PR agrees well with the absorption spectrum. (4) The present electrode can monitor the pH change in the time range from 10 ms to several hundred milliseconds, as deduced by comparing the SnO(2) signal with the signals of pH-sensitive dyes. Using this electrode system, flash-induced proton transfer by BR was measured for a wide pH range from 2 to 10. From these data, we reconfirmed various pK(a) values reported previously, indicating that the present method can give the correct pK(a) values. This is the first report to estimate these pK(a) values directly from the proton transfer. We then applied this method to flash-induced proton transfer of PR. We observed proton uptake followed by release for the pH range from 4 to 9.5, and in other pH ranges, proton release followed by uptake was observed.
Assuntos
Bacteriorodopsinas/análise , Bacteriorodopsinas/química , Processos Fotoquímicos , Prótons , Rodopsina/análise , Rodopsina/química , Compostos de Estanho/química , Técnicas de Química Analítica , Eletrodos , Halobacterium salinarum/química , Halobacterium salinarum/efeitos da radiação , Concentração de Íons de Hidrogênio , Rodopsinas Microbianas , Sensibilidade e Especificidade , Fatores de TempoRESUMO
F(1)-ATPase is a rotary molecular motor in which unidirectional rotation of the central gamma subunit is powered by ATP hydrolysis in three catalytic sites arranged 120 degrees apart around gamma. To study how hydrolysis reactions produce mechanical rotation, we observed rotation under an optical microscope to see which of the three sites bound and released a fluorescent ATP analog. Assuming that the analog mimics authentic ATP, the following scheme emerges: (i) in the ATP-waiting state, one site, dictated by the orientation of gamma, is empty, whereas the other two bind a nucleotide; (ii) ATP binding to the empty site drives an approximately 80 degrees rotation of gamma; (iii) this triggers a reaction(s), hydrolysis and/or phosphate release, but not ADP release in the site that bound ATP one step earlier; (iv) completion of this reaction induces further approximately 40 degrees rotation.
Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Bacillus/enzimologia , Hidrólise , Cinética , ATPases Translocadoras de Prótons/químicaRESUMO
F(1)-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F(1)-ATPase over the temperature range 4-50 degrees C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 x 10(6) M(-1) s(-1) at 4 degrees C to 4.3 x 10(7) M(-1) s(-1) at 40 degrees C, whereas the torque estimated at 2 mM ATP remained around 40 pN.nm over 4-50 degrees C. The rotation was stepwise at 4 degrees C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4-65 degrees C. F(1)-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30 degrees C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile.
Assuntos
Modelos Químicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/ultraestrutura , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/ultraestrutura , Simulação por Computador , Ativação Enzimática , Hidrólise , Rotação , TemperaturaRESUMO
F(1)-ATPase is a rotary molecular motor powered by the torque generated by another rotary motor F(0) to synthesize ATP in vivo. Therefore elucidation of the behavior of F(1) under external torque is very important. Here, we applied controlled external torque by electrorotation and investigated the ATP-driven rotation for the first time. The rotation was accelerated by assisting torque and decelerated by hindering torque, but F(1) rarely showed rotations in the ATP synthesis direction. This is consistent with the prediction by models based on the assumption that the rotation is tightly coupled to ATP hydrolysis and synthesis. At low ATP concentrations (2 and 5 microM), 120 degrees stepwise rotation was observed. Due to the temperature rise during experiment, quantitative interpretation of the data is difficult, but we found that the apparent rate constant of ATP binding clearly decreased by hindering torque and increased by assisting torque.
Assuntos
Trifosfato de Adenosina/farmacologia , Bacillus/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Rotação , Torque , Proteínas Motores Moleculares/metabolismo , Temperatura , Fatores de TempoRESUMO
Ion mobility mass spectrometry (IM-MS) is a technique capable of investigating structural changes of biomolecules based on their collision cross section (CCS). Recent advances in IM-MS allow us to separate carbohydrate isomers with subtle conformational differences, but the relationship between CCS and atomic structure remains elusive. Here, we characterize conformational ensembles of gas-phase N-glycans under the electrospray ionization condition using molecular dynamics simulations with enhanced sampling. We show that the separation of CCSs between isomers reflects folding features of N-glycans, which are determined both by chemical compositions and protonation states. Providing a physicochemical basis of CCS for N-glycans helps not only to interpret IM-MS measurements but also to estimate CCSs of complex glycans.
Assuntos
Gases , Espectrometria de Mobilidade Iônica , Conformação Molecular , Polissacarídeos/análise , Polissacarídeos/química , Simulação de Dinâmica MolecularRESUMO
Motor proteins are essential in life processes because they convert the free energy of ATP hydrolysis to mechanical work. However, the fundamental question on how they work when different amounts of free energy are released after ATP hydrolysis remains unanswered. To answer this question, it is essential to clarify how the stepping motion of a motor protein reflects the concentrations of ATP, ADP, and P(i) in its individual actions at a single molecule level. The F(1) portion of ATP synthase, also called F(1)-ATPase, is a rotary molecular motor in which the central gamma-subunit rotates against the alpha(3)beta(3) cylinder. The motor exhibits clear step motion at low ATP concentrations. The rotary action of this motor is processive and generates a high torque. These features are ideal for exploring the relationship between free energy input and mechanical work output, but there is a serious problem in that this motor is severely inhibited by ADP. In this study, we overcame this problem of ADP inhibition by introducing several mutations while retaining high enzymatic activity. Using a probe of attached beads, stepping rotation against viscous load was examined at a wide range of free energy values by changing the ADP concentration. The results showed that the apparent work of each individual step motion was not affected by the free energy of ATP hydrolysis, but the frequency of each individual step motion depended on the free energy. This is the first study that examined the stepping motion of a molecular motor at a single molecule level with simultaneous systematic control of DeltaG(ATP). The results imply that microscopically defined work at a single molecule level cannot be directly compared with macroscopically defined free energy input.
Assuntos
Trifosfato de Adenosina/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/química , Modelos Moleculares , Proteínas Motores Moleculares/química , ATPases Translocadoras de Prótons/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrólise , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Movimento (Física) , Mutação , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismoRESUMO
We demonstrate the simultaneous formation and spatial patterning of ZnO nanocrystals on an indium-tin oxide (ITO) surface upon local heating using a laser (1064 nm) and subsequent formation of microbubbles. Laser irradiation of an ITO surface in aqueous [Zn(NH3)4]2+ solution (1.0 × 10-2 M at pH 12.0) under an optical microscope produced ZnO nanocrystals, the presence of which was confirmed by X-ray diffraction analysis and Raman microspectroscopy. Scanning the focused laser beam over the ITO surface generated a spatial ZnO pattern (height: â¼60 nm, width: â¼1 µm) in the absence of a template or mask. The Marangoni convection generated in the vicinity of the microbubbles resulted in a rapid concentration/accumulation of [Zn(NH3)4]2+ around the microbubbles, which led to the formation of ZnO at the solid-bubble-solution three-phase contact line around the bubbles and thus afforded ZnO nanocrystals on the ITO surface upon local heating with a laser.