Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(3): 166, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230528

RESUMO

The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1-XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Genoma/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Reparo do DNA/genética , Replicação do DNA/genética , Humanos , Xeroderma Pigmentoso/genética
2.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664429

RESUMO

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Endonucleases , Fator de Transcrição TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animais , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
3.
NAR Cancer ; 5(4): zcad057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058548

RESUMO

The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.

4.
Sci Rep ; 10(1): 17012, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046789

RESUMO

Statins are prescribed to treat hypercholesterolemia and to reduce the risk of cardiovascular disease. However, statin users frequently report myalgia, which can discourage physical activity or cause patients to discontinue statin use, negating the potential benefit of the treatment. Although a proposed mechanism responsible for Statin-Associated Myopathy (SAM) suggests a correlation with impairment of mitochondrial function, the relationship is still poorly understood. Here, we provide evidence that long-term treatment of hypercholesterolemic patients with Simvastatin at a therapeutic dose significantly display increased mitochondrial respiration in peripheral blood mononuclear cells (PBMCs), and platelets compared to untreated controls. Furthermore, the amount of superoxide is higher in mitochondria in PBMCs, and platelets from Simvastatin-treated patients than in untreated controls, and the abundance of mitochondrial superoxide, but not mitochondrial respiration trends with patient-reported myalgia. Ubiquinone (also known as coenzyme Q10) has been suggested as a potential treatment for SAM; however, an 8-week course of oral ubiquinone had no impact on mitochondrial functions or the abundance of superoxide in mitochondria from PBMCs, and platelets. These results demonstrate that long-term treatment with Simvastatin increases respiration and the production of superoxide in mitochondria of PBMCs and platelets.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sinvastatina/farmacologia , Plaquetas/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Sinvastatina/uso terapêutico , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA