Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 15(12): 22438-70, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25486057

RESUMO

Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not), but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales) make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein's hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein's structure allow a myriad of applications of such materials with great potential in the near future.


Assuntos
Tecnologia Biomédica , Embalagem de Alimentos/tendências , Preparações Farmacêuticas/química , Zeína/química , Materiais Biocompatíveis/química , Biodegradação Ambiental , Zeína/ultraestrutura
2.
Environ Technol ; 45(12): 2388-2401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36734624

RESUMO

The widespread use of pesticides requires effective detection and quantification tools to improve monitoring of environmental quality. Electrochemical sensors offer a fast and sensitive response, and can also be optimized by combining several constituents and techniques, including biodegradable materials, being useful in the determination of chemical agents from environmental samples. Here, we produced a polymer-based sensor for 2,4,6-trichlorophenol determination, through electrospinning of poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend with graphite. The graphite-containing fibres were thermally treated and wetted in mineral oil, thus forming a paste, used as an electrode in the electrochemical sensor. The thermal analysis indicated a disorganization of the polymeric chains between the aromatic carbon chain of the PBAT polymer, resulting in a material with low enthalpy, lower crystallinity and greater thermal degradability after insertion of graphite in polymeric fibres. NIR spectra revealed changes related to the carbonyls of the polymeric ester groups. Cyclic voltammetry and square wave voltammetry techniques were applied to study the electrochemical behaviour of developed sensor. The thermal treatment of graphite-containing fibres increased the adhesion surface in which occurs the adsorption of the analyte on the electrode, which improved the peak current in the electrochemical tests. The PLA/PBAT/Graphite sensor applied to determination of 2,4,6-TCP presented the detection and quantification limits of 7.84 × 10-8 mol L-1 (0.0155 mg L-1) and 2.36 × 10-7 mol L-1 (0.0466 mg L-1) with a linearity response of 1.00 × 10-7 mol L-1 and 2.00 × 10-6 mol L-1 with correlation coefficient of 0.993 (r2).


Assuntos
Clorofenóis , Grafite , Poliésteres , Polímeros
3.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930397

RESUMO

Modified clays with organic molecules have many applications, such as the adsorption of pollutants, catalysts, and drug delivery systems. Different methodologies for intercalating these structures with organic moieties can be found in the literature with many purposes. In this paper, a new methodology of modifying Sodium Montmorillonite clays (Na-Mt) with a faster drying time was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET, and thermogravimetric analysis (TG and DTG). In the modification process, a mixture of ethyl alcohol, DMSO, and Na-Mt were kept under magnetic stirring for one hour. Statistical analysis was applied to evaluate the effects of the amount of DMSO, temperature, and sonication time on the modified clay (DMSO-SMAT) using a 23-factorial design. XRD and FTIR analyses showed the DMSO intercalation into sodium montmorillonite Argel-T (SMAT). An average increase of 0.57 nm for the interplanar distance was found after swelling with DMSO intercalation. BET analysis revealed a decrease in the surface area (from 41.8933 m2/g to 2.1572 m2/g) of Na-Mt when modified with DMSO. The porosity increased from 1.74 (SMAT) to 1.87 nm (DMSO-SMAT) after the application of the methodology. Thermal analysis showed a thermal stability for the DMSO-SMAT material, and this was used to calculate the DMSO-SMAT formula of Na[Al5Mg]Si12O30(OH)6 · 0.54 DMSO. Statistical analysis showed that only the effect of the amount of DMSO was significant for increasing the interlayer space of DMSO-SMAT. In addition, at room temperature, the drying time of the sample using this methodology was 30 min.

4.
Macromol Biosci ; 24(6): e2300507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332467

RESUMO

Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X-ray diffraction, and a shift in the 1000 cm-1 band in the Fourier-transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.


Assuntos
Anti-Infecciosos , Candida albicans , Clorexidina , Escherichia coli , Hidrogéis , Manihot , Staphylococcus aureus , Clorexidina/farmacologia , Clorexidina/química , Clorexidina/análogos & derivados , Manihot/química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Gomas Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana , Liberação Controlada de Fármacos
5.
Polymers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772062

RESUMO

This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters used in the electrospinning process to obtain the fibers were distance from the needle to the collecting target of 12 cm, flow of 1 mL h-1 and voltage of 14 kV. The best mass ratio of semiconductors in the polymeric fiber was defined from a 22 experimental design, and the values obtained were 10% TiO2-R, 1% Fe3O4 at pH 7.0. Polymer fibers were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) techniques. SEM measurements indicated a reduction in fiber diameter after the incorporation of semiconductors; for the PBAT/PLA fiber, the average diameter was 0.9466 ± 0.2490 µm, and for the fiber with TiO2-R and Fe3O4 was 0.6706 ± 0.1447 µm. In the DSC, DRX, TGA and FTIR analyses, it was possible to identify the presence of TiO2-R and Fe3O4 in the fibers, as well as their interactions with polymers, demonstrating changes in the crystallinity and degradation temperature of the material. These fibers were tested against Reactive Red 195 dye, showing an efficiency of 64.0% within 24 h, showing promise for photocatalytic degradation of environmental contaminants.

6.
Biomater Adv ; 151: 213484, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276691

RESUMO

The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the "magic bullet" and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Poloxâmero/química , Polímeros/uso terapêutico , Micelas , Nanoestruturas/química
7.
Int J Biol Macromol ; 235: 123905, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870650

RESUMO

Anadenanthera colubrina, popularly known as white angico, is a species extensively cultivated in Brazil, mainly in the cerrado region, including the state of Piauí. This study examines the development of films composed of white angico gum (WAG) and chitosan (CHI) and containing chlorhexidine (CHX), an antimicrobial agent. The solvent casting method was used to prepare films. Different combinations and concentrations of WAG and CHI were used to obtain films with good physicochemical characteristics. Properties such as the in vitro swelling ratio, the disintegration time, folding endurance, and the drug content were determined. The selected formulations were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the CHX release time and antimicrobial activity were evaluated. CHX showed a homogenous distribution in all CHI/WAG film formulations. The optimised films showed good physicochemical properties with 80% CHX release over 26 h, which is considered promising for local treatment of severe lesions in the mouth. Cytotoxicity tests of the films did not show toxicity. The antimicrobial and antifungal effects were very effective against the tested microorganisms.


Assuntos
Anti-Infecciosos , Quitosana , Clorexidina/farmacologia , Clorexidina/química , Quitosana/química , Anti-Infecciosos/farmacologia , Antifúngicos , Brasil , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Mater Sci Eng C Mater Biol Appl ; 112: 110853, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409030

RESUMO

Colorectal cancer (CRC) has a high incidence and resistance to conventional treatments. Curcumin (CUR) is a promising natural product in the treatment of CRC with excellent in vitro results. However, its low bioavailability is a limiting factor in clinical applications. To overcome, CUR was incorporated into hydrogels constituted by chitosan (CHT) and chondroitin sulfate (CS), natural biopolymers, capable of controlled release. Hydrogels were synthesized in ionic liquids (ILs, [Hmim][HSO4]) improving the solubility of CHT and the hydrogel properties. Furthermore, CUR was combined with silver nanoparticles (AgNPs) and visible light by Photodynamic Therapy (PDT), which, through the MEO effect (Metal-Enhanced Singlet Oxygen), leads to cell death. It is highlighted the green synthesis of AgNPs using an ultrasound bath. The CHT/CS hydrogels loaded with CUR/AgNPs were properly characterized. Cellular assays showed that the hydrogels (CHT/CS) were not cytotoxic to healthy tissues. However, PDT selective illumination led to inhibition of Caco-2 human colon cancer cells by the CHT/CS/CUR-AgNPs (CC50 = 91.5 µg mL-1 of hydrogel). The cellular uptake assays showed, in addition to the therapeutic action, that the CUR can works as a diagnostic fluorescence probe (theranostic system). Finally, we highlight our commitment to work with reagents, solvents, and methodologies aiming at the principles of green chemistry.


Assuntos
Curcumina/química , Hidrogéis/química , Nanopartículas Metálicas/química , Polissacarídeos/química , Prata/química , Oxigênio Singlete/metabolismo , Apoptose/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Sulfatos de Condroitina/química , Curcumina/metabolismo , Curcumina/farmacologia , Portadores de Fármacos/química , Humanos , Líquidos Iônicos/química , Luz , Nanopartículas Metálicas/toxicidade , Solubilidade
9.
Carbohydr Polym ; 250: 116879, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049822

RESUMO

Magnetic microgels based on chitosan, modified with glycidyl methacrylate (GMA) and activated with folic acid (FA), and cobalt ferrite nanoparticles, modified with GMA (GMACoFe2O4), were synthesized by emulsion polymerization. The size of the round-shaped microgels, with and without GMACoFe2O4, ranged from (1.62 ± 0.38) µm to (1.71 ± 0.61) µm, respectively. Their release behavior was evaluated in the presence and absence of a magnetic field (MF), using vitamin-B12 as a model drug. In the absence of MF, at pH 7.4, a fast release was observed, reaching the equilibrium after 30 min. In the MF presence, the alignment of the chains to it promoted an initial fast release, followed by a more controlled one, lasting for 50 min at pH 7.4. This type of release is attractive for the treatment of gastric wounds, which is improved by the presence of FA, conferring anti-oxidative and anti-secretory properties to the microgels.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Magnetismo , Microgéis/química , Nanopartículas/química , Vitamina B 12/metabolismo , Complexo Vitamínico B/metabolismo
10.
Process Saf Environ Prot ; 144: 177-185, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32834561

RESUMO

The increase of the industrialization process brought the growth of pollutant emissions into the atmosphere. At the same time, the demand for advances in aerosol filtration is evolving towards more sustainable technologies. Electrospinning is gaining notoriety, once it enables to produce polymeric nanofibers with different additives and also the obtaining of small pore sizes and fiber diameters; desirable features for air filtration materials. Therefore, this work aims to evaluate the filtration performance of cellulose acetate (CA) nanofibers and cationic surfactant cetylpyridinium bromide (CPB) produced by electrospinning technique for retention of aerosol nanoparticles. The pressure drop and collection efficiency measurements of sodium chloride (NaCl) aerosol particles (diameters from 7 to 300 nm) were performed using Scanning Mobility Particle Sizer (SMPS). The average diameter of the electrospun nanofibers used was 239 nm, ranging from 113 to 398 nm. Experimental results indicated that the nanofibers showed good permeability (10-11 m2) and high-efficiency filtration for aerosol nanoparticles (about 100 %), which can include black carbon (BC) and the new coronavirus. The pressure drop was 1.8 kPa at 1.6 cm s-1, which is similar to reported for some high-efficiency nanofiber filters. In addition, it also retains BC particles present in air, which was about 90 % for 375 nm and about 60 % for the 880 nm wavelength. Finally, this research provided information for future designs of indoor air filters and filter media for facial masks with renewable, non-toxic biodegradable, and potential antibacterial characteristics.

11.
Arch Latinoam Nutr ; 52(2): 203-6, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12184156

RESUMO

This study was carried out to determine the chemical composition, cholesterol contents and fatty acids profile of Brazilian commercial chicken giblets. The analysis were performed in gizzard, liver and heart in natura and also in cooked gizzard, fried liver and roasted heart. Fat and cholesterol contents ranged from 0.88% and 72.68 mg/100 g, in cooked gizzard, to 22.19% and 213.18 mg/100 g, in roasted heart. As the fat content gets higher, so does the cholesterol content. Palmitic (C16:0) and stearic acids (C18:0) were the predominant saturated fatty acids (SFA). The C16:0 ranged from 6.39% in cooked gizzard to 18.51% in fried liver. The C18:0 level ranged from 6.62% in roasted heart to 19.19% in cooked gizzard. Linoleic acid (C18:2 omega 6) was the predominant polyunsaturated fatty acid (PUFA). The data revealed that the three different analysed giblets presented a good PUFA/SFA ratio, with values of 1.11, 1.14 and 1.40 for cooked gizzard, fried liver and roasted heart, respectively.


Assuntos
Colesterol/análise , Ácidos Graxos/análise , Produtos Avícolas/análise , Análise de Variância , Animais , Brasil , Galinhas , Moela das Aves/química , Coração , Fígado/química
12.
Arch. latinoam. nutr ; 52(2): 203-206, jun. 2002.
Artigo em Inglês | LILACS | ID: lil-330464

RESUMO

This study was carried out to determine the chemical composition, cholesterol contents and fatty acids profile of Brazilian commercial chicken giblets. The analysis were performed in gizzard, liver and heart in natura and also in cooked gizzard, fried liver and roasted heart. Fat and cholesterol contents ranged from 0.88 and 72.68 mg/100 g, in cooked gizzard, to 22.19 and 213.18 mg/100 g, in roasted heart. As the fat content gets higher, so does the cholesterol content. Palmitic (C16:0) and stearic acids (C18:0) were the predominant saturated fatty acids (SFA). The C16:0 ranged from 6.39 in cooked gizzard to 18.51 in fried liver. The C18:0 level ranged from 6.62 in roasted heart to 19.19 in cooked gizzard. Linoleic acid (C18:2 omega 6) was the predominant polyunsaturated fatty acid (PUFA). The data revealed that the three different analysed giblets presented a good PUFA/SFA ratio, with values of 1.11, 1.14 and 1.40 for cooked gizzard, fried liver and roasted heart, respectively.


Assuntos
Animais , Ácidos Graxos/análise , Colesterol , Produtos Avícolas/análise , Análise de Variância , Brasil , Galinhas , Fígado/química , Moela das Aves , Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA