Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Clin Orthop Relat Res ; 477(10): 2367-2377, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31393339

RESUMO

BACKGROUND: The treatment of osteomyelitis can be challenging because of poor antibiotic penetration into the infected bone and toxicities associated with prolonged antibiotic regimens to control infection. Irreversible electroporation (IRE), a percutaneous image-guided ablation technology in which the targeted delivery of high-voltage electrical pulses permanently damages the cell membrane, has been shown to effectively control bacterial growth in various settings. However, IRE for the management of bone infections has yet to be evaluated. QUESTIONS/PURPOSES: We aimed to evaluate IRE for treating osteomyelitis by assessing (1) the efficacy of IRE to suppress the in vitro growth of a clinical isolate of S. aureus, alone or combined with cefazolin; and (2) the effects of IRE on the in vivo treatment of a rabbit model of osteomyelitis. METHODS: S. aureus strain UAMS-1 expanded in vitro to the log phase was subjected to an electric field of 2700 V/cm, which was delivered in increasing numbers of pulses. Immediately after electroporation, bacteria were plated on agar plates with or without cefazolin. The number of colony-forming units (CFUs) was scored the following day. ANOVA tests were used to analyze in vitro data. In a rabbit osteomyelitis model, we inoculated the same bacterial strain into the radius of adult male New Zealand White rabbits. Three weeks after inoculation, all animals (n = 32) underwent irrigation and débridement, as well as wound culture of the infected forelimb. Then, they were randomly assigned to one of four treatment groups (n = eight per group): untreated control, cefazolin only, IRE only, or combined IRE + cefazolin. Serial radiography was performed to assess disease progression using a semiquantitative grading scale. Bone and soft-tissue specimens from the infected and contralateral forelimbs were collected at 4 weeks after treatment for bacterial isolation and histologic assessment using a semiquantitative scale. RESULTS: The in vitro growth of S. aureus UAMS-1 was impaired by IRE in a pulse-dependent fashion; the number of CFUs/mL was different among seven pulse levels, namely 0, 10, 30, 60, 90, 120, and 150 pulses. With the number of CFUs/mL observed in untreated controls set as 100%, 10 pulses rendered a median of 50.2% (range 47.1% to 58.2%), 30 pulses rendered a median of 2.7% (range 2.5% to 2.8%), 60 pulses rendered a median of 0.014% (range 0.012% to 0.015%), 90 pulses rendered a median of 0.004% (range 0.002% to 0.004%), 120 pulses rendered a median of 0.001% (range 0.001% to 0.001%), and 150 pulses rendered a median of 0.001% (range 0.000% to 0.001%) (Kruskal-Wallis test: p = 0.003). There was an interaction between the effect of the number of pulses and the concentration of cefazolin (two-way ANOVA: F [8, 30] = 17.24; p < 0.001), indicating that combining IRE with cefazolin is more effective than either treatment alone at suppressing the growth of S. aureus UAMS-1. Likewise, the clinical response in the rabbit model (the percentage of animals without detectable residual bacteria in the bone and surrounding soft tissue after treatment) was better in the combination group than in the other groups: control, 12.5% (one of eight animals); IRE only, 12.5% (one of eight animals); cefazolin only, 25% (two of eight animals); and IRE + cefazolin, 75% (six of eight animals) (two-sided Fisher's exact test: p = 0.030). CONCLUSIONS: IRE effectively suppressed the growth of S. aureus UAMS-1 and enhanced the antibacterial effect of cefazolin in in vitro studies. When translated to a rabbit osteomyelitis model, the addition of IRE to conventional parenteral antibiotic treatment produced the strongest response, which supports the in vitro findings. CLINICAL RELEVANCE: Our results show that IRE may improve the results of standard parenteral antibiotic treatment, thus setting the stage for models with larger animals and perhaps trials in humans for validation.


Assuntos
Eletroporação/métodos , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Coelhos , Distribuição Aleatória
2.
Proc Natl Acad Sci U S A ; 113(43): 12192-12197, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791005

RESUMO

Intestinal stem cells (ISCs) are maintained by a niche mechanism, in which multiple ISCs undergo differential fates where a single ISC clone ultimately occupies the niche. Importantly, mutations continually accumulate within ISCs creating a potential competitive niche environment. Here we use single cell lineage tracing following stochastic transforming growth factor ß receptor 2 (TgfßR2) mutation to show cell autonomous effects of TgfßR2 loss on ISC clonal dynamics and differentiation. Specifically, TgfßR2 mutation in ISCs increased clone survival while lengthening times to monoclonality, suggesting that Tgfß signaling controls both ISC clone extinction and expansion, independent of proliferation. In addition, TgfßR2 loss in vivo reduced crypt fission, irradiation-induced crypt regeneration, and differentiation toward Paneth cells. Finally, altered Tgfß signaling in cultured mouse and human enteroids supports further the in vivo data and reveals a critical role for Tgfß signaling in generating precursor secretory cells. Overall, our data reveal a key role for Tgfß signaling in regulating ISCs clonal dynamics and differentiation, with implications for cancer, tissue regeneration, and inflammation.


Assuntos
Diferenciação Celular/genética , Celulas de Paneth/citologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Células-Tronco/citologia , Animais , Linhagem da Célula/genética , Rastreamento de Células , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Camundongos , Mutação , Celulas de Paneth/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Análise de Célula Única/métodos , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo
3.
Radiology ; 286(1): 149-157, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28825892

RESUMO

Purpose To assess for nanopore formation in bone marrow cells after irreversible electroporation (IRE) and to evaluate the antitumoral effect of IRE, used alone or in combination with doxorubicin (DOX)-loaded superparamagnetic iron oxide (SPIO) nanoparticles (SPIO-DOX), in a VX2 rabbit tibial tumor model. Materials and Methods All experiments were approved by the institutional animal care and use committee. Five porcine vertebral bodies in one pig underwent intervention (IRE electrode placement without ablation [n = 1], nanoparticle injection only [n = 1], and nanoparticle injection followed by IRE [n = 3]). The animal was euthanized and the vertebrae were harvested and evaluated with scanning electron microscopy. Twelve rabbit VX2 tibial tumors were treated, three with IRE, three with SPIO-DOX, and six with SPIO-DOX plus IRE; five rabbit VX2 tibial tumors were untreated (control group). Dynamic T2*-weighted 4.7-T magnetic resonance (MR) images were obtained 9 days after inoculation and 2 hours and 5 days after treatment. Antitumor effect was expressed as the tumor growth ratio at T2*-weighted MR imaging and percentage necrosis at histologic examination. Mixed-effects linear models were used to analyze the data. Results Scanning electron microscopy demonstrated nanopores in bone marrow cells only after IRE (P , .01). Average volume of total tumor before treatment (503.1 mm3 ± 204.6) was not significantly different from those after treatment (P = .7). SPIO-DOX was identified as a reduction in signal intensity within the tumor on T2*-weighted images for up to 5 days after treatment and was related to the presence of iron. Average tumor growth ratios were 103.0% ± 75.8 with control treatment, 154.3% ± 79.7 with SPIO-DOX, 77% ± 30.8 with IRE, and -38.5% ± 24.8 with a combination of SPIO-DOX and IRE (P = .02). The percentage residual viable tumor in bone was significantly less for combination therapy compared with control (P = .02), SPIO-DOX (P , .001), and IRE (P = .03) treatment. The percentage residual viable tumor in soft tissue was significantly less with IRE (P = .005) and SPIO-DOX plus IRE (P = .005) than with SPIO-DOX. Conclusion IRE can induce nanopore formation in bone marrow cells. Tibial VX2 tumors treated with a combination of SPIO-DOX and IRE demonstrate enhanced antitumor effect as compared with individual treatments alone. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Eletroporação/métodos , Nanopartículas de Magnetita/química , Modelos Biológicos , Nanoporos , Animais , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Coelhos , Suínos , Tíbia/citologia
4.
Int J Hyperthermia ; 35(1): 559-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303437

RESUMO

OBJECTIVE: A molecular dynamics approach to understanding fundamental mechanisms of combined thermal and osmotic stress induced by thermochemical ablation (TCA) is presented. METHODS: Structural models of fibronectin and fibronectin bound to its integrin receptor provide idealized models for the effects of thermal and osmotic stress in the extracellular matrix. Fibronectin binding to integrin is known to facilitate cell survival. The extracellular environment produced by TCA at the lesion boundary was modelled at 37 °C and 43 °C with added sodium chloride (NaCl) concentrations (0, 40, 80, 160, and 320 mM). Atomistic simulations of solvated proteins were performed using the GROMOS96 force field and TIP3P water model. Computational results were compared with the results of viability studies of human hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B under matching thermal and osmotic experimental conditions. RESULTS: Cell viability was inversely correlated with hyperthermal and hyperosmotic stresses. Added NaCl concentrations were correlated with a root mean square fluctuation increase of the fibronectin arginylglycylaspartic acid (RGD) binding domain. Computed interaction coefficients demonstrate preferential hydration of the protein model and are correlated with salt-induced strengthening of hydrophobic interactions. Under the combined hyperthermal and hyperosmotic stress conditions (43 °C and 320 mM added NaCl), the free energy change required for fibronectin binding to integrin was less favorable than that for binding under control conditions (37 °C and 0 mM added NaCl). CONCLUSION: Results quantify multiple measures of structural changes as a function of temperature increase and addition of NaCl to the solution. Correlations between cell viability and stability measures suggest that protein aggregates, non-functional proteins, and less favorable cell attachment conditions have a role in TCA-induced cell stress.


Assuntos
Febre/fisiopatologia , Simulação de Dinâmica Molecular , Pressão Osmótica/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares
5.
Nucleic Acids Res ; 40(2): e14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22110042

RESUMO

Two major limitations to achieve efficient homing endonuclease-stimulated gene correction using retroviral vectors are low frequency of gene targeting and random integration of the targeting vectors. To overcome these issues, we developed a reporter system for quick and facile testing of novel strategies to promote the selection of cells that undergo targeted gene repair and to minimize the persistence of random integrations and non-homologous end-joining events. In this system, the gene target has an I-SceI site upstream of an EGFP reporter; and the repair template includes a non-functional EGFP gene, the positive selection transgene MGMTP140K tagged with mCherry, and the inducible Caspase-9 suicide gene. Using this dual fluorescent reporter system it is possible to detect properly targeted integration. Furthermore, this reporter system provides an efficient approach to enrich for gene correction events and to deplete events produced by random integration. We have also developed a second reporter system containing MGMTP140K in the integrated target locus, which allows for selection of primary cells with the integrated gene target after transplantation. This system is particularly useful for testing repair strategies in primary hematopoietic stem cells. Thus, our reporter systems should allow for more efficient gene correction with less unwanted off target effects.


Assuntos
Endodesoxirribonucleases/metabolismo , Marcação de Genes/métodos , Genes Reporter , Linhagem Celular , Corantes Fluorescentes/análise , Genoma , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Proteínas Metiltransferases/análise , Proteínas Metiltransferases/genética
6.
J Thromb Haemost ; 21(8): 2202-2212, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178770

RESUMO

BACKGROUND: Many patients with glioblastoma multiforme (GBM) develop deep venous thrombosis or pulmonary emboli. Cell-free circulating mitochondria increase after brain injury and are associated with coagulopathy. OBJECTIVES: This study evaluated whether mitochondria play a role in the GBM-induced hypercoagulable state. METHODS: We examined the correlation between cell-free circulating mitochondria and venous thrombosis in patients with GBM and the impact of mitochondria on venous thrombosis in mice with inferior vena cava stenosis. RESULTS: Using plasma samples of 82 patients with GBM, we found that patients with GBM had a higher number of mitochondria in their plasma (GBM with venous thromboembolism [VTE],: 2.8 × 107 mitochondria/mL; GBM without VTE, 1.9 × 107 mitochondria/mL) than that in healthy control subjects (n = 17) (0.3 × 107 mitochondria/mL). Interestingly, patients with GBM and VTE (n = 41) had a higher mitochondria concentration than patients with GBM without VTE (n = 41). In a murine model of inferior vena cava stenosis, intravenous delivery of mitochondria resulted in an increased rate of venous thrombosis compared with that in controls (70% and 28%, respectively). Mitochondria-induced venous thrombi were neutrophil-rich and contained more platelets than those in control thrombi. Furthermore, as mitochondria are the only source of cardiolipin in circulation, we compared the concentration of anticardiolipin immunoglobulin G in plasma samples of patients with GBM and found a higher concentration in patients with VTE (optical density, 0.69 ± 0.04) than in those without VTE (optical density, 0.51 ± 0.04). CONCLUSION: We concluded that mitochondria might play a role in the GBM-induced hypercoagulable state. We propose that quantifying circulating mitochondria or anticardiolipin antibody concentrations in patients with GBM might identify patients at increased risk of VTE.


Assuntos
Glioblastoma , Tromboembolia Venosa , Trombose Venosa , Animais , Camundongos , Glioblastoma/complicações , Constrição Patológica/complicações , Fatores de Risco , Trombose Venosa/complicações
7.
J Thromb Haemost ; 20(1): 104-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608736

RESUMO

BACKGROUND: Podoplanin (PDPN) is a sialylated membrane glycoprotein that binds to C-type lectin-like receptor 2 on platelets resulting in platelet activation. PDPN is expressed on lymphatic endothelial cells, perivascular fibroblasts/pericytes, cancer cells, cancer-associated fibroblasts, and tumor stromal cells. PDPN's expression on malignant epithelial cells plays a role in metastasis. Furthermore, the expression of PDPN in brain tumors (high-grade gliomas) was found to correlate with an increased risk of venous thrombosis. OBJECTIVE: We examined the expression of PDPN and its role in tumor progression and venous thrombosis in ovarian cancer. METHODS: We used mouse models of ovarian cancer and venous thrombosis. RESULTS: Ovarian cancer cells express PDPN and release PDPN-rich extracellular vesicles (EVs), and cisplatin and topotecan (chemotherapies commonly used in ovarian cancer) increase the expression of podoplanin in cancer cells. The expression of PDPN in ovarian cancer cells promotes tumor growth in a murine model of ovarian cancer and that knockdown of PDPN gene expression results in smaller primary tumors. Both PDPN-expressing ovarian cancer cells and their EVs cause platelet aggregation. In a mouse model of venous thrombosis, PDPN-expressing EVs released from HeyA8 ovarian cancer cells produce more frequent thrombosis than PDPN-negative EVs derived from PDPN-knockdown HeyA8 cells. Blood clots induced by PDPN-positive EVs contain more platelets than those in blood clots induced by PDPN-negative EVs. CONCLUSIONS: In summary, our findings demonstrate that the expression of PDPN by ovarian cancer cells promotes tumor growth and venous thrombosis in mice.


Assuntos
Glioma , Neoplasias Ovarianas , Trombose Venosa , Animais , Modelos Animais de Doenças , Células Endoteliais , Camundongos , Agregação Plaquetária , Trombose Venosa/genética
8.
Sci Rep ; 12(1): 14449, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002545

RESUMO

Immunotherapy is a promising new treatment approach for hepatocellular carcinoma (HCC), but there are numerous barriers to immunotherapy in HCC, including an immunosuppressive microenvironment and the "immunotolerance" of the liver. Hyperthermia treatment modalities are standard of care for early stage HCC, and hyperthermia is known to have immunomodulatory effects. We have developed a molecularly targeted photothermal ablation (MTPA) technology that provides thermally tunable, tumor-specific heat generation. The purpose of this study was to evaluate the morphologic and immunologic effects of MTPA in an immunotherapy-resistant syngeneic mouse model of HCC in a background of toxin-induced cirrhosis. We found that the anatomic, cellular, and molecular features of this model recapitulate the characteristics of advanced human HCC. MTPA as a monotherapy and in combination with immune checkpoint therapy significantly increased intratumoral CD3+ and activated CD8+ T cells while decreasing regulatory T cells relative to control or immune checkpoint therapy alone based on immunohistochemistry, flow cytometry, and single cell RNA sequencing data. Furthermore, we identified evidence of MTPA's influence on systemic tumor immunity, with suppression of remote tumor growth following treatment of orthotopic tumors. The results of this study suggest that tumor-specific hyperthermia may help overcome resistance mechanisms to immunotherapy in advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Camundongos , Microambiente Tumoral
9.
Cancers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063752

RESUMO

Thermal ablation is a cornerstone in the management of cancer patients. Typically, ablation procedures are performed for patients with a solitary or oligometastatic disease with the intention of eradicating all sites of the disease. Ablation has traditionally played a less prominent role for patients with a widely metastatic disease. For such patients, attempting to treat numerous sites of disease compounds potential risks without a clear clinical benefit and, as such, a compelling justification for performing an intervention that is unlikely to alter a patient's clinical trajectory is uncommon. However, the discovery of immune checkpoints and the development of immune checkpoint inhibitors have brought a new perspective to the relevance of local cancer therapies such as ablation for patients with a metastatic disease. It is becoming increasingly apparent that local cancer therapies can have systemic immune effects. Thus, in the new perspective of cancer care centered upon immunologic principles, there is a strong interest in exploring the utility of ablation for patients with a metastatic disease for its immunologic implications. In this review, we summarize the unmet clinical need for adjuvant interventions such as ablation to broaden the impact of systemic immunotherapies. We additionally highlight the extant preclinical and clinical data for the immunogenicity of common thermal ablation modalities.

10.
Drug Deliv ; 28(1): 240-251, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33501859

RESUMO

Colorectal cancer is one of the most common cancers in the United States and treatment options are limited for patients who develop liver metastases. Several chemotherapeutic regimens have been used for transvascular liver-directed therapy in the treatment of colorectal liver metastases without clear evidence of superiority of one therapy over another. We describe the development of a novel nanoemulsion through combining irinotecan (IRI), a first line systemic agent used for the treatment of colon cancer, with lipiodol, an oily contrast medium derived from poppy seed oil, and evaluated its pharmacokinetic and biodistribution profile as a function of portal venous chemoembolization (PVCE) versus transarterial chemoembolization (TACE) delivery. The Tessari technique was used to create a stable emulsion (20 mg IRI mixed with 2 mL lipiodol) with resultant particle size ranging from 28.9 nm to 56.4 nm. Pharmacokinetic profile established through venous sampling in Buffalo rats demonstrate that the area under the curve (AUC0-∞) of IRI was significantly less after PVCE with IRI-lipiodol as compared to IRI alone (131 vs. 316 µg*min/mL, p-value = .023), suggesting significantly higher amounts of IRI retention in the liver with the IRI-lipiodol nanoemulsion via first-pass extraction. Subseqent biodistribution studies in tumor-bearing WAG/Rjj rats revealed more IRI present in the tumor following TACE versus PVCE (29.19 ± 12.33 µg/g versus 3.42 ± 1.62; p-value = .0033) or IV (29.19 ± 12.33 µg/g versus 1.05 ± 0.47; p-value = .0035). The IRI-lipiodol nanoemulsion demonstrated an acceptable hepatotoxicity profile in all routes of administration. In conclusion, the IRI-lipiodol nanoemulsion via TACE showed promise and warrants further investigation as an option for the treatment of metastatic colorectal cancer.


Assuntos
Neoplasias Colorretais/patologia , Óleo Etiodado/farmacocinética , Artéria Hepática , Irinotecano/farmacocinética , Neoplasias Hepáticas/secundário , Fígado/metabolismo , Veia Porta , Inibidores da Topoisomerase I/farmacocinética , Animais , Linhagem Celular Tumoral , Quimioembolização Terapêutica/métodos , Portadores de Fármacos , Emulsões/farmacocinética , Técnicas In Vitro , Irinotecano/administração & dosagem , Neoplasias Hepáticas/terapia , Nanoestruturas , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Ratos , Inibidores da Topoisomerase I/administração & dosagem
11.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589526

RESUMO

BACKGROUND: Intratumoral delivery of immunotherapeutics represents a compelling solution to directly address local barriers to tumor immunity. However, we have previously shown that off-target delivery is a substantial problem during intratumoral injections; this can lead to diminished drug efficacy and systemic toxicities. We have identified three variables that influence intratumoral drug delivery: injection technique, drug formulation and tumor microenvironment. The purpose of this study was to characterize the impact of modifications in each variable on intratumoral drug delivery and immunotherapy efficacy. METHODS: Intratumoral injections were performed in a hybrid image-guided intervention suite with ultrasound, fluoroscopy and CT scanning capabilities in both rat and mouse syngeneic tumor models. Intratumoral drug distribution was quantified by CT volumetric imaging. The influence of varying needle design and hydrogel-based drug delivery on the immune response to a stimulator of interferon genes (STING) agonist was evaluated using flow cytometry and single cell RNA sequencing. We also evaluated the influence of tumor stiffness on drug injection distribution. RESULTS: Variations in needle design, specifically with the use of a multiside hole needle, led to approximately threefold improvements in intratumoral drug deposition relative to conventional end-hole needles. Likewise, delivery of a STING agonist through a multiside hole needle led to significantly increased expression of type I interferon-associated genes and 'inflammatory' dendritic cell gene signatures relative to end-hole STING agonist delivery. A multidomain peptide-based hydrogel embedded with a STING agonist led to substantial improvements in intratumoral deposition; however, the hydrogel was noted to generate a strong immune response against itself within the target tumor. Evaluation of tumor stroma on intratumoral drug delivery revealed that there was a greater than twofold improvement in intratumoral distribution in soft tumors (B16 melanoma) compared with firm tumors (MC38 colorectal). CONCLUSIONS: Injection technique, drug formulation and tumor stiffness play key roles in the accurate delivery of intratumoral immunotherapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos , Imunoterapia , Neoplasias Hepáticas/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Peptídeos/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/agonistas , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Antineoplásicos/química , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Composição de Medicamentos , Feminino , Hidrogéis , Injeções Intralesionais , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Peptídeos/química , Ratos Endogâmicos BUF , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral
12.
Gastroenterology ; 136(5): 1680-8.e7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19208363

RESUMO

BACKGROUND & AIMS: During colorectal cancer pathogenesis, mutations and epigenetic events cause neoplastic behavior in epithelial cells by deregulating the Wnt, Ras-Raf-extracellular signal-regulated kinase (ERK), and transforming growth factor (TGF)-beta-signaling pathways, among others. The TGF-beta-signaling pathway is often inactivated in colon cancer cells by mutations in the gene encoding the TGF-beta receptor TGFBR2. The RAS-RAF-ERK pathway is frequently up-regulated in colon cancer via mutational activation of KRAS or BRAF. We assessed how these pathways interact in vivo and affect formation of colorectal tumors. METHODS: We analyzed intestinal tumors that arose in mice that express an oncogenic (active) form of Kras and that have Tgfbr2 inactivations-2 common molecular events observed in human colorectal tumors. LSL-KrasG12D mice were crossed with Villin-Cre;Tgfbr2E2flx/E2flx mice, which do not express Tgfbr2 in the intestinal epithelium. RESULTS: Neither inactivation of Tgfbr2 nor expression of oncogenic Kras alone was sufficient to induce formation of intestinal neoplasms. Histologic abnormalities arose in mice that expressed Kras, but only the combination of Tgfbr2 inactivation and Kras activation led to intestinal neoplasms and metastases. The cancers arose via a beta-catenin-independent mechanism; the epidermal growth factor-signaling pathway was also activated. Cells in the resulting tumors proliferated at higher rates, expressed decreased levels of p15, and expressed increased levels of cyclin D1 and cdk4, compared with control cells. CONCLUSIONS: A combination of inactivation of the TGF-beta-signaling pathway and expression of oncogenic Kras leads to formation of invasive intestinal neoplasms through a beta-catenin-independent pathway; these adenocarcinomas have the capacity to metastasize.


Assuntos
Genes ras/genética , Neoplasias Intestinais/fisiopatologia , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Ativação Transcricional , Transfecção , Proteínas Wnt/metabolismo , Quinases raf/metabolismo
13.
Commun Biol ; 3(1): 783, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335270

RESUMO

Thermal ablation is a standard therapy for patients with hepatocellular carcinoma (HCC). Contemporary ablation devices are imperfect, as they lack tumor specificity. An ideal ablation modality would generate thermal energy only within tumoral tissue. Furthermore, as hyperthermia is known to influence tumor immunity, such a tumor-specific ablation modality may have the ability to favorably modulate the tumor immune landscape. Here we show a clinically relevant thermal ablation modality that generates tumor-specific hyperthermia, termed molecularly targeted photothermal ablation (MTPA), that is based upon the excellent localization of indocyanine green to HCC. In a syngeneic rat model, we demonstrate the tumor-specific hyperthermia generated by MTPA. We also show through spatial and transcriptomic profiling techniques that MTPA favorably modulates the intratumoral myeloid population towards tumor immunogenicity and diminishes the systemic release of oncogenic cytokines relative to conventional ablation modalities.


Assuntos
Carcinoma Hepatocelular/etiologia , Imunomodulação/efeitos da radiação , Neoplasias Hepáticas/etiologia , Terapia Fototérmica/métodos , Animais , Biomarcadores Tumorais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Expressão Gênica , Hipertermia Induzida , Imunomodulação/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Terapia de Alvo Molecular , Ratos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
14.
J Med Primatol ; 38(6): 438-43, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793180

RESUMO

BACKGROUND: Macaca nemestrina is a nonhuman primate used as a model in preclinical studies of hematopoietic stem cell transplantation and adoptive transfer of T cells. Adoptive T cell transfer studies typically require ex vivo expansion of substantial numbers of T cells prior to their reinfusion into the subject. METHODS: Pigtailed macaque peripheral blood CD4(+) cells were expanded using CD3 and CD28 antibody-coated beads. These cells were transformed using Herpesvirus saimiri and were also transduced with HIV-1 based lentiviral vectors. RESULTS: We report an efficient method for the ex vivo expansion of CD4(+) T cells from Macaca nemestrina peripheral blood. With this protocol, primary CD4(+) T cells can be expanded between 300- to 6000-fold during 24-day period and can be efficiently transduced with lentiviral vectors. Furthermore, these T cells can be transformed by Herpesvirus saimiri and maintained in culture for several months. The transformed T cell lines can be productively infected with the simian immunodeficiency virus (SIV) strain SIV(mac239). CONCLUSIONS: We have established methods for the expansion and transformation of primary M. nemestrina CD4(+) T cells and demonstrated the utility of these methods for several applications.


Assuntos
Linfócitos T CD4-Positivos , Técnicas de Cultura de Células , Macaca nemestrina/imunologia , Animais , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Transformada , Humanos , Separação Imunomagnética , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia
15.
Cancer Res ; 67(14): 6882-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17638899

RESUMO

Toward the goal of developing an optical imaging contrast agent that will enable surgeons to intraoperatively distinguish cancer foci from adjacent normal tissue, we developed a chlorotoxin:Cy5.5 (CTX:Cy5.5) bioconjugate that emits near-IR fluorescent signal. The probe delineates malignant glioma, medulloblastoma, prostate cancer, intestinal cancer, and sarcoma from adjacent non-neoplastic tissue in mouse models. Metastatic cancer foci as small as a few hundred cells were detected in lymph channels. Specific binding to cancer cells is facilitated by matrix metalloproteinase-2 (MMP-2) as evidenced by reduction of CTX:Cy5.5 binding in vitro and in vivo by a pharmacologic blocker of MMP-2 and induction of CTX:Cy5.5 binding in MCF-7 cells following transfection with a plasmid encoding MMP-2. Mouse studies revealed that CTX:Cy5.5 has favorable biodistribution and toxicity profiles. These studies show that CTX:Cy5.5 has the potential to fundamentally improve intraoperative detection and resection of malignancies.


Assuntos
Carbocianinas/química , Neoplasias/metabolismo , Venenos de Escorpião/química , Animais , Neoplasias Encefálicas/metabolismo , Corantes Fluorescentes/química , Glioma/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Neovascularização Patológica , Fótons , Ratos
16.
IEEE Trans Med Imaging ; 38(2): 561-571, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30207951

RESUMO

As photoacoustic (PA) imaging makes its way into the clinic, the accuracy of PA-based metrics becomes increasingly important. To address this need, a method combining finite-element-based local fluence correction (LFC) with signal-to-noise-ratio (SNR) regularization was developed and validated to accurately estimate oxygen saturation (SO2) in tissue. With data from a Vevo LAZR system, performance of our LFC approach was assessed in ex vivo blood targets (37.6%-99.6% SO2) and in vivo rat arteries. Estimation error of absolute SO2 and change in SO2 reduced from 10.1% and 6.4%, respectively, without LFC to 2.8% and 2.0%, respectively, with LFC, while the accuracy of the LFC method was correlated with the number of wavelengths acquired. This paper demonstrates the need for an SNR-regularized LFC to accurately quantify SO2 with PA imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Oxigênio/sangue , Técnicas Fotoacústicas/métodos , Animais , Análise de Elementos Finitos , Artéria Hepática/diagnóstico por imagem , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Masculino , Ratos , Razão Sinal-Ruído , Ultrassonografia/métodos
17.
Magn Reson Imaging ; 57: 156-164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30465870

RESUMO

OBJECTIVES: To compare the accuracy of contrast-enhanced ultrasound (CEUS) and Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for the assessment of changes in tissue vascularization as result of sorafenib treatment in a rat model of hepatocellular carcinoma (HCC). METHODS: Male Buffalo rats with orthotopic liver tumors treated daily with 7.5 mg/kg sorafenib via oral gavage for 2 weeks (n = 9) were subject to DCE-MRI and CEUS 2 weeks after tumor implantation - right before treatment initiation - and also after treatment completion - right before tumor harvest. Untreated animals (n = 10) were used as control. Tumor tissue sections were stained for hematoxylin-eosin, pimonidazole, and CD34 for quantitative assessment of necrosis, hypoxia, and microvessel density (MVD), respectively. RESULTS: Of all the DCE-MRI parameters that were evaluated, only volume transfer constant (Ktrans) measurements were significantly lower in sorafenib-treated tumors (0.18 vs 0.33 min-1, p < 0.01), indicating a substantial decrease in vascular permeability caused by the therapy. This reduction was associated with decreased MVD (3.9 vs 10.8% CD34+ cells, p < 0.01), higher tumor necrosis (31.9 vs 21.8%, p < 0.001) and hypoxia (19.7 vs 10.5% pimonidazole binding, p < 0.01). Moreover, statistical analysis demonstrate significant correlation of DCE-MRI Ktrans with histopathologic tissue necrosis (r = -0.537, p < 0.05) and MVD (r = 0.599, p < 0.05). Interestingly, none of the CEUS measurements were significantly different between the control and treatment groups, and did not show statistical correlation with any of the histopathological parameters assessed (p > 0.05). CONCLUSIONS: Sorafenib-induced reduction in vascular permeability in this preclinical model of HCC is detected more accurately through DCE-MRI than CEUS, and DCE-MRI parameters strongly correlate with histopathological changes in tissue vascularization and tissue necrosis.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste/química , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sorafenibe/química , Animais , Biomarcadores Tumorais , Permeabilidade Capilar , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hipóxia , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/patologia , Masculino , Necrose , Neovascularização Patológica , Permeabilidade , Ratos
18.
Growth Factors ; 26(5): 254-62, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18651288

RESUMO

Transforming growth factor-beta (TGF-beta) is a pluripotent cytokine that can have both tumor suppressing and tumor promoting effects on epithelial cells. It is unclear what determines when TGF-beta and its signaling pathway act predominantly as a tumor suppressor pathway or as a tumor-promoter pathway and whether TGF-beta can have both classes of effects concurrently on a cell. We investigated the effect of TGF-beta on anoikis in colorectal cancer cell lines sensitive to TGF-beta-mediated growth inhibition to determine if the context of the cells could be one of the factors that would affect whether TGF-beta exerts tumor suppressor or oncogene activity on colon cancer cells. We observed variable effects of TGF-beta on anoikis in these cell lines, even though they all are growth-inhibited by TGF-beta. Thus, we show that TGF-beta has variable effects on anoikis in colon cancer cell lines that likely reflects the effects of concurrent gene mutations in the cancer cells and the activation state of the signaling pathways controlled by these genes.


Assuntos
Anoikis/efeitos dos fármacos , Anoikis/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Genes Reporter , Células HCT116 , Humanos , Luciferases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
19.
Cancer Res ; 66(20): 9837-44, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17047044

RESUMO

The transforming growth factor-beta (TGF-beta) signaling pathway is a tumor-suppressor pathway that is commonly inactivated in colon cancer. TGF-beta is a secreted ligand that mediates its effects through a transmembrane heteromeric receptor complex, which consists of type I (TGFBR1) and type II subunits (TGFBR2). Approximately 30% of colon cancers carry TGFBR2 mutations, demonstrating that it is a common target for mutational inactivation in this cancer. To assess the functional role of TGFBR2 inactivation in the multistep progression sequence of colon cancer, we generated a mouse model that recapitulates two common genetic events observed in human colon cancer by mating Apc(1638N/wt) mice with mice that are null for Tgfbr2 in the intestinal epithelium, Villin-Cre;Tgfbr2(E2flx/E2flx) mice. In this model, we observed a dramatic increase in the number of intestinal adenocarcinomas in the Apc(1638N/wt);Villin-Cre;Tgfbr2(E2flx/E2flx) mice (called Apc(1638N/wt);Tgfbr2(IEKO)) compared with those mice with intact Tgfbr2 (Apc(1638N/wt);Tgfbr2(E2flx/E2flx)). Additionally, in vitro analyses of epithelial tumor cells derived from the Apc(1638N/wt);Tgfbr2(IEKO) mice showed enhanced expression and activity of matrix metalloproteinase MMP-2 and MMP-9, as well as increased TGF-beta1 secretion in the conditioned medium. Similarly, primary tumor tissues from the Apc(1638N/wt);Tgfbr2(IEKO) mice also showed elevated amounts of TGF-beta1 as well as higher MMP-2 activity in comparison with Apc(1638N/wt);Tgfbr2(E2flx/E2flx)-derived tumors. Thus, loss of TGFBR2 in intestinal epithelial cells promotes the invasion and malignant transformation of tumors initiated by Apc mutation, providing evidence that Wnt signaling deregulation and TGF-beta signaling inactivation cooperate to drive the initiation and progression, respectively, of intestinal cancers in vivo.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Genes APC , Animais , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
20.
Neoplasia ; 18(6): 371-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27292026

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is globally the second most common cause of cancer mortality. The majority of HCC patients are diagnosed at advanced stage disease for which no curative treatments exist. TGF-ß has been identified as a potential therapeutic target. However, the molecular mechanisms mediating its functional switch from a tumor suppressor to tumor promoter in HCC and its interactions with other signaling pathways are poorly understood. Here, we demonstrate an aberrant molecular network between the TGF-ß and c-KIT pathway that mediates the functional switch of TGF-ß to a driver of tumor progression in HCC. TGF-ß/SMAD2 signaling transcriptionally regulates expression of the c-KIT receptor ligand (stem cell factor [SCF]) with subsequent auto- and paracrine activation of c-KIT/JAK1/STAT3 signaling. SCF induces TGF-ß1 ligand expression via STAT3, thereby forming a positive feedback loop between TGF-ß/SMAD and SCF/c-KIT signaling. This network neutralizes TGF-ß-mediated cell cycle inhibition and induces tumor cell proliferation, epithelial-to-mesenchymal-transition, migration, and invasion. Disruption of this feedback loop inhibits TGF-ß tumor-promoting effects and restores its antiproliferative functions. Consistent with our in vitro data, we demonstrate SCF overexpression and its correlation to SMAD2 and STAT3 activation in human HCC tumors, advanced tumor-node-metastasis stages, and shorter survival. CONCLUSIONS: Canonical TGF-ß and c-KIT signaling forms a positive, tumor-promoting feedback loop. Disruption of this loop restores TGF-ß tumor suppressor function and provides the rationale for targeting the TGF-ß/SCF axis as a novel therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteína Smad2/metabolismo , Fator de Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Fígado/patologia , Invasividade Neoplásica/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA