Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(7): 10210-10224, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225611

RESUMO

Frequency-resolved optical gating for the complete reconstruction of attosecond bursts (FROG-CRAB) is a well-known technique for the complete temporal characterization of ultrashort extreme ultraviolet (XUV) pulses, with durations down to a few tens of attoseconds. Recently, this technique was extended to few-femtosecond XUV pulses, produced by high-order harmonic generation (HHG) in gases, thanks to the implementation of a robust iterative algorithm: the extended ptychographic iterative engine (ePIE). We demonstrate, by using numerical simulations, that the ptychographic reconstruction technique is characterized by an excellent degree of convergence and robustness. We analyse the effects on pulse reconstruction of various experimental imperfections, namely, the jitter of the relative temporal delay between the XUV pulse and a suitably delayed infrared (IR) pulse and the noise of the measured FROG-CRAB spectrograms. We also show that the ePIE approach is particularly suitable for the reconstruction of incomplete FROG-CRAB spectrograms (i.e., spectrograms with a reduced number of measured time delays) and of spectrograms acquired with a reduced spectral resolution, particularly when relatively high-intensity IR pulses are employed.

2.
Opt Express ; 26(6): 6771-6784, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609365

RESUMO

Sub-10-fs pulses tunable in the extreme-ultraviolet (XUV) spectral region are particularly important in many research fields: from atomic and molecular spectroscopy to the study of relaxation processes in solids and transition phase processes, from holography to free-electron laser injection. A crucial prerequisite for all applications is the accurate measurement of the temporal characteristics of these pulses. To fulfill this purpose, many phase retrieval algorithms have been successfully applied to reconstruct XUV attosecond pulses. Nevertheless, their extension to XUV femtosecond pulses is not trivial and has never been investigated/reported so far. We demonstrate that ultrashort XUV pulses, produced by high-order harmonic generation, spectrally filtered by a time-delay compensated monochromator, can be fully characterized, in terms of temporal intensity and phase, by employing the ptychographic reconstruction technique while other common reconstruction algorithms fail. This allows us to report on the generation and complete temporal characterization of XUV pulses with duration down to 5 fs, which constitute the shortest XUV pulse ever achieved via a time-delay compensated monochromator.

3.
J Phys Chem Lett ; 13(48): 11169-11175, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36445180

RESUMO

Dissociation of the ethylene cation is a prototypical multistep pathway in which the exact mechanisms leading to internal energy conversions are not fully known. For example, it is still unclear how the energy is exactly redistributed among the internal modes and which step is rate-determining. Here we use few-femtosecond extreme-ultraviolet pulses of tunable energy to excite a different superposition of the four lowest states of C2H4+ and probe the subsequent fast relaxation with a short infrared pulse. Our results demonstrate that the infrared pulse photoexcites the cationic ground state (GS) to higher excited states, producing a hot GS upon relaxation, which enhances the fragmentation yield. As the photoexcitation probability of the GS strongly depends on the molecular geometry, the probing by the IR pulse provides information about the ultrafast excited-state dynamics and the type of conical intersection (planar or twisted) involved in the first 20 fs of the nonradiative relaxation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA