Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 464(7288): 571-4, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20336141

RESUMO

Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom. Recently the technique has advanced greatly owing to the introduction of aberration-corrected optics. However, neither electron microscopy nor any other experimental technique has yet been able to resolve and identify all the atoms in a non-periodic material consisting of several atomic species. Here we show that annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects. Three types of atomic substitutions were found and identified: carbon substituting for boron, carbon substituting for nitrogen, and oxygen substituting for nitrogen. The substitutions caused in-plane distortions in the boron nitride monolayer of about 0.1 A magnitude, which were directly resolved, and verified by density functional theory calculations. The results demonstrate that atom-by-atom structural and chemical analysis of all radiation-damage-resistant atoms present in, and on top of, ultra-thin sheets has now become possible.


Assuntos
Técnicas de Química Analítica , Microscopia Eletrônica/métodos , Compostos de Boro/química
2.
Ultramicroscopy ; 151: 160-167, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25458189

RESUMO

We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.

3.
Ultramicroscopy ; 123: 90-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22742821

RESUMO

Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples.


Assuntos
Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Transmissão e Varredura/tendências , Elétrons , Microscopia Eletrônica de Transmissão e Varredura/métodos
4.
Philos Trans A Math Phys Eng Sci ; 367(1903): 3683-97, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19687060

RESUMO

An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA