Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Clin Monit Comput ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771490

RESUMO

PURPOSE: Growing evidence shows the complex interaction between lung and kidney in critically ill patients. The renal resistive index (RRI) is a bedside measurement of the resistance of the renal blood flow and it is correlated with kidney injury. The positive end-expiratory pressure (PEEP) level could affect the resistance of renal blood flow, so we assumed that RRI could help to monitoring the changes in renal hemodynamics at different PEEP levels. Our hypothesis was that the RRI at ICU admission could predict the risk of acute kidney injury in mechanical ventilated critically ill patients. METHODS: We performed a prospective study including 92 patients requiring mechanical ventilation for ≥ 48 h. A RRI ≥ 0.70, was deemed as pathological. RRI was measured within 24 h from ICU admission while applying 5,10 and 15 cmH2O of PEEP in random order (PEEP trial). RESULTS: Overall, RRI increased from 0.62 ± 0.09 at PEEP 5 to 0.66 ± 0.09 at PEEP 15 (p < 0.001). The mean RRI value during the PEEP trial was able to predict the occurrence of AKI with AUROC = 0.834 [95%CI 0.742-0.927]. Patients exhibiting a RRI ≥ 0.70 were 17/92(18%) at PEEP 5, 28/92(30%) at PEEP 10, 38/92(41%) at PEEP 15, respectively. Thirty-eight patients (41%) exhibited RRI ≥ 0.70 at least once during the PEEP trial. In these patients, AKI occurred in 55% of the cases, versus 13% remaining patients, p < 0.001. CONCLUSIONS: RRI seems able to predict the risk of AKI in mechanical ventilated patients; further, RRI values are influenced by the PEEP level applied. TRIAL REGISTRATION: Clinical gov NCT03969914 Registered 31 May 2019.

2.
BMC Med ; 21(1): 392, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915050

RESUMO

BACKGROUND: Sepsis is characterized by a dysregulated immune response and metabolic alterations, including decreased high-density lipoprotein cholesterol (HDL-C) levels. HDL exhibits beneficial properties, such as lipopolysaccharides (LPS) scavenging, exerting anti-inflammatory effects and providing endothelial protection. We investigated the effects of CER-001, an engineered HDL-mimetic, in a swine model of LPS-induced acute kidney injury (AKI) and a Phase 2a clinical trial, aiming to better understand its molecular basis in systemic inflammation and renal function. METHODS: We carried out a translational approach to study the effects of HDL administration on sepsis. Sterile systemic inflammation was induced in pigs by LPS infusion. Animals were randomized into LPS (n = 6), CER20 (single dose of CER-001 20 mg/kg; n = 6), and CER20 × 2 (two doses of CER-001 20 mg/kg; n = 6) groups. Survival rate, endothelial dysfunction biomarkers, pro-inflammatory mediators, LPS, and apolipoprotein A-I (ApoA-I) levels were assessed. Renal and liver histology and biochemistry were analyzed. Subsequently, we performed an open-label, randomized, dose-ranging (Phase 2a) study included 20 patients with sepsis due to intra-abdominal infection or urosepsis, randomized into Group A (conventional treatment, n = 5), Group B (CER-001 5 mg/kg BID, n = 5), Group C (CER-001 10 mg/kg BID, n = 5), and Group D (CER-001 20 mg/kg BID, n = 5). Primary outcomes were safety and efficacy in preventing AKI onset and severity; secondary outcomes include changes in inflammatory and endothelial dysfunction markers. RESULTS: CER-001 increased median survival, reduced inflammatory mediators, complement activation, and endothelial dysfunction in endotoxemic pigs. It enhanced LPS elimination through the bile and preserved liver and renal parenchyma. In the clinical study, CER-001 was well-tolerated with no serious adverse events related to study treatment. Rapid ApoA-I normalization was associated with enhanced LPS removal and immunomodulation with improvement of clinical outcomes, independently of the type and gravity of the sepsis. CER-001-treated patients had reduced risk for the onset and progression to severe AKI (stage 2 or 3) and, in a subset of critically ill patients, a reduced need for organ support and shorter ICU length of stay. CONCLUSIONS: CER-001 shows promise as a therapeutic strategy for sepsis management, improving outcomes and mitigating inflammation and organ damage. TRIAL REGISTRATION: The study was approved by the Agenzia Italiana del Farmaco (AIFA) and by the Local Ethic Committee (N° EUDRACT 2020-004202-60, Protocol CER-001- SEP_AKI_01) and was added to the EU Clinical Trials Register on January 13, 2021.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Animais , Suínos , Lipoproteínas HDL , Apolipoproteína A-I/uso terapêutico , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacologia , Lipopolissacarídeos , Pesquisa Translacional Biomédica , Inflamação , Sepse/tratamento farmacológico , Injúria Renal Aguda/tratamento farmacológico , Mediadores da Inflamação
3.
Crit Care ; 27(1): 398, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853480

RESUMO

BACKGROUND: Although patients with interstitial pneumonia pattern (ILD-UIP) and acute exacerbation (AE) leading to severe acute respiratory failure may require invasive mechanical ventilation (MV), physiological data on lung mechanics during MV are lacking. We aimed at describing the physiological effect of lung-protective ventilation in patients with AE-ILD-UIP compared with primary ARDS. METHODS: Partitioned lung and chest wall mechanics were assessed in a series of AE-ILD-UIP patients matched 1:1 with primary ARDS as controls (based on BMI and PaO2/FiO2 ratio). Three PEEP levels (zero = ZEEP, 4-8 cmH2O = PEEPLOW, and titrated to achieve positive end-expiratory transpulmonary pressure PL,EE = PEEPTITRATED) were used for measurements. RESULTS: Ten AE-ILD-UIP patients and 10 matched ARDS were included. In AE-ILD-UIP median PL,EE at ZEEP was - 4.3 [- 7.6- - 2.3] cmH2O and lung elastance (EL) 44 [40-51] cmH2O/L. At PEEPLOW, PL,EE remained negative and EL did not change (p = 0.995) versus ZEEP. At PEEPTITRATED, PL,EE increased to 0.8 [0.3-1.5] cmH2O and EL to 49 [43-59] (p = 0.004 and p < 0.001 compared to ZEEP and PEEPLOW, respectively). ΔPL decreased at PEEPLOW (p = 0.018) and increased at PEEPTITRATED (p = 0.003). In matched ARDS control PEEP titration to obtain a positive PL,EE did not result in significant changes in EL and ΔPL. CONCLUSIONS: In mechanically ventilated AE-ILD-UIP patients, differently than in patients with primary ARDS, PEEP titrated to obtain a positive PL,EE significantly worsened lung mechanics.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial , Mecânica Respiratória/fisiologia , Pulmão , Síndrome do Desconforto Respiratório/terapia , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/terapia
4.
J Clin Monit Comput ; 36(1): 161-167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385260

RESUMO

Mechanically ventilated patients with ARDS due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) seem particularly susceptible to AKI. Our hypothesis was that the renal blood flow could be more compromised in SARS-CoV-2 patients than in patients with "classical" ARDS. We compared the renal resistivity index (RRI) and the renal venous flow (RVF) in ARDS patients with SARS-CoV-2 and in ARDS patients due to other etiologies. Prospective, observational pilot study performed on 30 mechanically ventilated patients (15 with SARS-COV-2 ARDS and 15 with ARDS). Mechanical ventilation settings included constant-flow controlled ventilation, a tidal volume of 6 ml/kg of ideal body weight and the PEEP level titrated to the lowest driving pressure. Ultrasound Doppler measurements of RRI and RVF pattern were performed in each patient. Patients with SARS-COV-2 ARDS had higher RRI than patients with ARDS (0.71[0.67-0.78] vs 0.64[0.60-0.74], p = 0.04). RVF was not-continuous in 9/15 patients (71%) in the SARS-COV-2 ARDS group and in and 5/15 (33%) in the ARDS group (p = 0.27). A linear correlation was found between PEEP and RRI in patients with SARS-COV-2 ARDS (r2 = 0.31; p = 0.03) but not in patients with ARDS. Occurrence of AKI was 53% in patients with SARS-COV-2 ARDS and 33% in patients with ARDS (p = 0.46). We found a more pronounced impairment in renal blood flow in mechanically ventilated patients with SARS-COV-2 ARDS, compared with patients with "classical" ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Projetos Piloto , Estudos Prospectivos , Circulação Renal , Respiração Artificial , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2
5.
Crit Care ; 25(1): 196, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099028

RESUMO

BACKGROUND: The evaluation of patient effort is pivotal during pressure support ventilation, but a non-invasive, continuous, quantitative method to assess patient inspiratory effort is still lacking. We hypothesized that the concavity of the inspiratory flow-time waveform could be useful to estimate patient's inspiratory effort. The purpose of this study was to assess whether the shape of the inspiratory flow, as quantified by a numeric indicator, could be associated with inspiratory effort during pressure support ventilation. METHODS: Twenty-four patients in pressure support ventilation were enrolled. A mathematical relationship describing the decay pattern of the inspiratory flow profile was developed. The parameter hypothesized to estimate effort was named Flow Index. Esophageal pressure, airway pressure, airflow, and volume waveforms were recorded at three support levels (maximum, minimum and baseline). The association between Flow Index and reference measures of patient effort (pressure time product and pressure generated by respiratory muscles) was evaluated using linear mixed effects models adjusted for tidal volume, respiratory rate and respiratory rate/tidal volume. RESULTS: Flow Index was different at the three pressure support levels and all group comparisons were statistically significant. In all tested models, Flow Index was independently associated with patient effort (p < 0.001). Flow Index prediction of inspiratory effort agreed with esophageal pressure-based methods. CONCLUSIONS: Flow Index is associated with patient inspiratory effort during pressure support ventilation, and may provide potentially useful information for setting inspiratory support and monitoring patient-ventilator interactions.


Assuntos
Capacidade Inspiratória , Respiração Artificial/instrumentação , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Mecânica Respiratória/fisiologia , Pesos e Medidas/instrumentação
6.
Crit Care ; 25(1): 427, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911541

RESUMO

BACKGROUND: Flow Index, a numerical expression of the shape of the inspiratory flow-time waveform recorded during pressure support ventilation, is associated with patient inspiratory effort. The aim of this study was to assess the accuracy of Flow Index in detecting high or low inspiratory effort during pressure support ventilation and to establish cutoff values for the Flow index to identify these conditions. The secondary aim was to compare the performance of Flow index,of breathing pattern parameters and of airway occlusion pressure (P0.1) in detecting high or low inspiratory effort during pressure support ventilation. METHODS: Data from 24 subjects was included in the analysis, accounting for a total of 702 breaths. Breaths with high inspiratory effort were defined by a pressure developed by inspiratory muscles (Pmusc) greater than 10 cmH2O while breaths with low inspiratory effort were defined by a Pmusc lower than 5 cmH2O. The areas under the receiver operating characteristic curves of Flow Index and respiratory rate, tidal volume,respiratory rate over tidal volume and P0.1 were analyzed and compared to identify breaths with low or high inspiratory effort. RESULTS: Pmusc, P0.1, Pressure Time Product and Flow Index differed between breaths with high, low and intermediate inspiratory effort, while RR, RR/VT and VT/kg of IBW did not differ in a statistically significant way. A Flow index higher than 4.5 identified breaths with high inspiratory effort [AUC 0.89 (CI 95% 0.85-0.93)], a Flow Index lower than 2.6 identified breaths with low inspiratory effort [AUC 0.80 (CI 95% 0.76-0.83)]. CONCLUSIONS: Flow Index is accurate in detecting high and low spontaneous inspiratory effort during pressure support ventilation.


Assuntos
Respiração com Pressão Positiva , Respiração Artificial , Humanos , Pulmão , Respiração , Volume de Ventilação Pulmonar
7.
Crit Care ; 25(1): 74, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608030

RESUMO

BACKGROUND: Biomarkers can be used to detect the presence of endothelial and/or alveolar epithelial injuries in case of ARDS. Angiopoietin-2 (Ang-2), soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), P-selectin and E-selectin are biomarkers of endothelial injury, whereas the receptor for advanced glycation end-products (RAGE) reflects alveolar epithelial injury. The aims of this study were to evaluate whether the plasma concentration of the above-mentioned biomarkers was different 1) in survivors and non-survivors of COVID-19-related ARDS and 2) in COVID-19-related and classical ARDS. METHODS: This prospective study was performed in two COVID-19-dedicated Intensive Care Units (ICU) and one non-COVID-19 ICU at Ferrara University Hospital. A cohort of 31 mechanically ventilated patients with COVID-19 ARDS and a cohort of 11 patients with classical ARDS were enrolled. Ang-2, ICAM-1, VCAM-1, P-selectin, E-selectin and RAGE were determined with a bead-based multiplex immunoassay at three time points: inclusion in the study (T1), after 7 ± 2 days (T2) and 14 ± 2 days (T3). The primary outcome was to evaluate the plasma trend of the biomarker levels in survivors and non-survivors. The secondary outcome was to evaluate the differences in respiratory mechanics variables and gas exchanges between survivors and non-survivors. Furthermore, we compared the plasma levels of the biomarkers at T1 in patients with COVID-19-related ARDS and classical ARDS. RESULTS: In COVID-19-related ARDS, the plasma levels of Ang-2 and ICAM-1 at T1 were statistically higher in non-survivors than survivors, (p = 0.04 and p = 0.03, respectively), whereas those of P-selectin, E-selectin and RAGE did not differ. Ang-2 and ICAM-1 at T1 were predictors of mortality (AUROC 0.650 and 0.717, respectively). At T1, RAGE and P-selectin levels were higher in classical ARDS than in COVID-19-related ARDS. Ang-2, ICAM-1 and E-selectin were lower in classical ARDS than in COVID-19-related ARDS (all p < 0.001). CONCLUSIONS: COVID-19 ARDS is characterized by an early pulmonary endothelial injury, as detected by Ang-2 and ICAM-1. COVID-19 ARDS and classical ARDS exhibited a different expression of biomarkers, suggesting different pathological pathways. Trial registration NCT04343053 , Date of registration: April 13, 2020.


Assuntos
Biomarcadores/análise , Lesão Pulmonar/diagnóstico , Respiração Artificial/efeitos adversos , Idoso , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/sangue , Área Sob a Curva , COVID-19/sangue , COVID-19/prevenção & controle , Estudos de Coortes , Selectina E/análise , Selectina E/sangue , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Molécula 1 de Adesão Intercelular/análise , Molécula 1 de Adesão Intercelular/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/sangue , Selectina-P/análise , Selectina-P/sangue , Estudos Prospectivos , Curva ROC , Respiração Artificial/normas , Respiração Artificial/estatística & dados numéricos , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/fisiopatologia , Versicanas/análise , Versicanas/sangue , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/sangue
8.
Crit Care Med ; 48(12): e1332-e1336, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932346

RESUMO

OBJECTIVES: Clinical observation suggests that early acute respiratory distress syndrome induced by the severe acute respiratory syndrome coronavirus 2 may be "atypical" due to a discrepancy between a relatively unaffected static respiratory system compliance and a significant hypoxemia. This would imply an "atypical" response to the positive end-expiratory pressure. DESIGN: Single-center, unblinded, crossover study. SETTING: ICU of Bari Policlinico Academic Hospital (Italy), dedicated to care patients with confirmed diagnosis of novel coronavirus disease 2019. PATIENTS: Eight patients with early severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome and static respiratory compliance higher than or equal to 50 mL/cm H2O. INTERVENTIONS: We compared a "lower" and a "higher" positive end-expiratory pressure approach, respectively, according to the intervention arms of the acute respiratory distress syndrome network and the positive end-expiratory pressure setting in adults with acute respiratory distress syndrome studies. MEASUREMENTS AND MAIN RESULTS: Patients were ventilated with the acute respiratory distress syndrome network and, subsequently, with the ExPress protocol. After 1 hour of ventilation, for each protocol, we recorded arterial blood gas, respiratory mechanics, alveolar recruitment, and hemodynamic variables. Comparisons were performed with analysis of variance for repeated measures or Friedman test as appropriate. Positive end-expiratory pressure was increased from 9 ± 3.5 to 17.7 ± 1.7 cm H2O (p < 0.01). Alveolar recruitment was 450 ± 111 mL. Static respiratory system compliance decreased from 58.3 ± 7.6 mL/cm H2O to 47.4 ± 14.5 mL/cm H2O (p = 0.018) and the "stress index" increased from 0.97 ± 0.03 to 1.22 ± 0.07 (p < 0.001). The PaO2/FIO2 ratio increased from 131 ± 22 to 207 ± 41 (p < 0.001), and the PaCO2 increased from 45.9 ± 12.7 to 49.8 ± 13.2 mm Hg (p < 0.001). The cardiac index went from 3.6 ± 0.4 to 2.9 ± 0.6 L/min/m (p = 0.01). CONCLUSIONS: Our data suggest that the "higher" positive end-expiratory pressure approach in patients with severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome and high compliance improves oxygenation and lung aeration but may result in alveolar hyperinflation and hemodynamic alterations.


Assuntos
COVID-19/complicações , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Gasometria , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mecânica Respiratória/fisiologia , SARS-CoV-2
9.
Crit Care ; 24(1): 652, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218354

RESUMO

INTRODUCTION: Pressure support ventilation (PSV) should allow spontaneous breathing with a "normal" neuro-ventilatory drive. Low neuro-ventilatory drive puts the patient at risk of diaphragmatic atrophy while high neuro-ventilatory drive may causes dyspnea and patient self-inflicted lung injury. We continuously assessed for 12 h the electrical activity of the diaphragm (EAdi), a close surrogate of neuro-ventilatory drive, during PSV. Our aim was to document the EAdi trend and the occurrence of periods of "Low" and/or "High" neuro-ventilatory drive during clinical application of PSV. METHOD: In 16 critically ill patients ventilated in the PSV mode for clinical reasons, inspiratory peak EAdi peak (EAdiPEAK), pressure time product of the trans-diaphragmatic pressure per breath and per minute (PTPDI/b and PTPDI/min, respectively), breathing pattern and major asynchronies were continuously monitored for 12 h (from 8 a.m. to 8 p.m.). We identified breaths with "Normal" (EAdiPEAK 5-15 µV), "Low" (EAdiPEAK < 5 µV) and "High" (EAdiPEAK > 15 µV) neuro-ventilatory drive. RESULTS: Within all the analyzed breaths (177.117), the neuro-ventilatory drive, as expressed by the EAdiPEAK, was "Low" in 50.116 breath (28%), "Normal" in 88.419 breaths (50%) and "High" in 38.582 breaths (22%). The average times spent in "Low", "Normal" and "High" class were 1.37, 3.67 and 0.55 h, respectively (p < 0.0001), with wide variations among patients. Eleven patients remained in the "Low" neuro-ventilatory drive class for more than 1 h, median 6.1 [3.9-8.5] h and 6 in the "High" neuro-ventilatory drive class, median 3.4 [2.2-7.8] h. The asynchrony index was significantly higher in the "Low" neuro-ventilatory class, mainly because of a higher number of missed efforts. CONCLUSIONS: We observed wide variations in EAdi amplitude and unevenly distributed "Low" and "High" neuro ventilatory drive periods during 12 h of PSV in critically ill patients. Further studies are needed to assess the possible clinical implications of our physiological findings.


Assuntos
Suporte Ventilatório Interativo/instrumentação , Monitorização Fisiológica/métodos , Idoso , Estado Terminal/terapia , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Suporte Ventilatório Interativo/métodos , Itália , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/estatística & dados numéricos , Respiração Artificial/instrumentação , Respiração Artificial/métodos
10.
Ann Intensive Care ; 14(1): 106, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963617

RESUMO

BACKGROUND: The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS: Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS: Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS: In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.

11.
J Anesth Analg Crit Care ; 3(1): 29, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641139

RESUMO

BACKGROUND: According to the Surviving Sepsis Campaign (SSC) fluids and vasopressors are the mainstays of early resuscitation of septic shock while inotropes are indicated in case of tissue hypoperfusion refractory to fluids and vasopressors, suggesting severe cardiac dysfunction. However, septic cardiac disfunction encompasses a large spectrum of severities and may remain "subclinical" during early resuscitation. We hypothesized that "subclinical" cardiac dysfunction may nevertheless influence fluid and vasopressor administration during early resuscitation. We retrospectively reviewed prospectically collected data on fluids and vasoconstrictors administered outside the ICU in patients with septic shock resuscitated according to the SSC guidelines that had reached hemodynamic stability without the use of inotropes. All the patients were submitted to transpulmonary thermodilution (TPTD) hemodynamic monitoring at ICU entry. Subclinical cardiac dysfunction was defined as a TPTD-derived cardiac function index (CFI) ≤ 4.5 min-1. RESULTS: At ICU admission, subclinical cardiac dysfunction was present in 17/40 patients (42%; CFI 3.6 ± 0.7 min-1 vs 6.6 ± 1.9 min-1; p < 0.01). Compared with patients with normal CFI, these patients had been resuscitate with more fluids (crystalloids 57 ± 10 vs 47 ± 9 ml/kg PBW; p < 0.01) and vasopressors (norepinephrine 0.65 ± 0.25 vs 0.43 ± 0.29 mcg/kg/min; p < 0.05). At ICU admission these patients had lower cardiac index (2.2 ± 0.6 vs 3.6 ± 0.9 L/min/m2, p < 0.01) and higher systemic vascular resistances (2721 ± 860 vs 1532 ± 480 dyn*s*cm-5/m2, p < 0.01). CONCLUSIONS: In patients with septic shock resuscitated according to the SSC, we found that subclinical cardiac dysfunction may influence the approach to fluids and vasopressor administration during early resuscitation. Our data support the implementation of early, bedside assessment of cardiac function during early resuscitation of septic shock.

12.
Antibiotics (Basel) ; 12(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37370367

RESUMO

Evidence-based, standard antibiotic therapy for ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) is a relevant unmet clinical need in the intensive care unit (ICU). We aimed to evaluate the effectiveness of first-line therapy with old and novel CRAB active antibiotics in monomicrobial VAP caused by CRAB. A prospective, observational study was performed in a mixed non-COVID-19 ICU. The primary outcome measure was clinical failure upon first-line targeted therapy. Features independently influencing failure occurrence were also investigated via Cox proportional multivariable analysis. To account for the imbalance in antibiotic treatment allocation, a propensity score analysis with an inverse probability treatment weighting approach was adopted. Of the 90 enrolled patients, 34 (38%) experienced clinical failure. Compared to patients who experienced a clinical resolution of VAP, those who had clinical failure were of an older age (median age 71 (IQR 64-78) vs. 62 (IQR 52-69) years), and showed greater burden of comorbidities (median Charlson comorbidity index 8 (IQR 6-8) vs. 4 (IQR 2-6)), higher frequency of immunodepression (44% vs. 21%), and greater clinical severity at VAP onset (median SOFA score 10 (IQR 9-11) vs. 9 (IQR 7-11)). Lower rates of use of fast molecular diagnostics for nosocomial pneumonia (8.8% vs. 30.3%) and of timely CRAB active therapy administration (65% vs. 89%), and higher rates of colistin-based targeted therapy (71% vs. 46%) were also observed in patients who failed first-line therapy. Overall, CRAB active iv regimens were colistin-based in 50 patients and cefiderocol-based in 40 patients, both always combined with inhaled colistin. According to the backbone agent of first-line regimens, clinical failure was lower in the cefiderocol group, compared to that in the colistin group (25% vs. 48%, respectively). In multivariable Cox regression analysis, the burden of comorbid conditions independently predicted clinical failure occurrence (Charlson index aHR = 1.21, 95% CI = 1.04-1.42, p = 0.01), while timely targeted antibiotic treatment (aHR = 0.40, 95% CI = 0.19-0.84, p = 0.01) and cefiderocol-based first-line regimens (aHR = 0.38, 95% CI = 0.17-0.85, p = 0.02) strongly reduced failure risk. In patients with VAP caused by CRAB, timely active therapy improves infection outcomes and cefiderocol holds promise as a first-line therapeutic option.

13.
Front Surg ; 8: 736541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621780

RESUMO

In recent years, veno-venous extracorporeal membrane oxygenation (V-V ECMO) has allowed complex lung and airways resections in patients with a compromised perioperative respiratory function. In the following report, we present a case of successful weaning from V-V ECMO in a patient who underwent an inferior bilobectomy for lung cancer.

14.
Minerva Anestesiol ; 87(3): 319-324, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32755090

RESUMO

BACKGROUND: Patient-ventilator asynchronies are challenging during pediatric mechanical ventilation. We hypothesized that monitoring the electrical activity of the diaphragm (EAdi) together with the "standard" airway opening pressure (Pao) and flow-time waveforms during pressure support ventilation would improve the ability of a cohort of critical care physicians to detect asynchronies in ventilated children. METHODS: We recorded the flow, Pao and EAdi waveforms in ten consecutive patients. The recordings were split in periods of 15 s, each reproducing a ventilator screenshot. From this pool, a team of four experts selected the most representative screenshots including at least one of the three most common asynchronies (missed efforts, auto-triggering and double triggering) and split them into two versions, respectively showing or not the EAdi waveforms. The screenshots were shown in random order in a questionnaire to sixty experienced pediatric intensivists that were asked to identify any episode of patient-ventilator asynchrony. RESULTS: Among the ten patients included in the study, only eight had EAdi tracings without artifacts and were analyzed. When the Eadi waveform was shown, the auto-triggering detection improved from 13% to 67% (P<0.0001) and the missed efforts detection improved from 43% to 95% (P<0.0001). The detection of double triggering, instead, did not improve (85% with the EAdi vs. 78% without the EAdi waveform; P=0.52). CONCLUSIONS: This single center study suggests that the EAdi waveform may improve the ability of pediatric intensivists to detect missed efforts and auto-triggering asynchronies. Further studies are required to determine the clinical implications of these findings.


Assuntos
Diafragma , Médicos , Criança , Cuidados Críticos , Diafragma/diagnóstico por imagem , Humanos , Respiração Artificial , Ventiladores Mecânicos
15.
Am J Trop Med Hyg ; 105(6): 1490-1497, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34662857

RESUMO

Lung ultrasound (LUS) can be used to assess loss of aeration, which is associated with outcome in patients with coronavirus disease 2019 (COVID-19) presenting to the emergency department. We hypothesized that LUS scores are associated with outcome in critically ill COVID-19 patients receiving invasive ventilation. This retrospective international multicenter study evaluated patients with COVID-19-related acute respiratory distress syndrome (ARDS) with at least one LUS study within 5 days after invasive mechanical ventilation initiation. The global LUS score was calculated by summing the 12 regional scores (range 0-36). Pleural line abnormalities and subpleural consolidations were also scored. The outcomes were successful liberation from the ventilator and intensive care mortality within 28 days, analyzed with multistate, competing risk proportional hazard models. One hundred thirty-seven patients with COVID-19-related ARDS were included in our study. The global LUS score was associated with successful liberation from mechanical ventilation (hazard ratio [HR]: 0.91 95% confidence interval [CI] 0.87-0.96; P = 0.0007) independently of the ARDS severity, but not with 28 days mortality (HR: 1.03; 95% CI 0.97-1.08; P = 0.36). Subpleural consolidation and pleural line abnormalities did not add to the prognostic value of the global LUS score. Examinations within 24 hours of intubation showed no prognostic value. To conclude, a lower global LUS score 24 hours after invasive ventilation initiation is associated with increased probability of liberation from the mechanical ventilator COVID-19 ARDS patients, independently of the ARDS severity.


Assuntos
Extubação , COVID-19/patologia , COVID-19/terapia , Pulmão/patologia , SARS-CoV-2 , Ultrassonografia , Idoso , Estudos de Coortes , Feminino , Humanos , Internacionalidade , Masculino , Pessoa de Meia-Idade
16.
J Clin Med ; 10(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208672

RESUMO

BACKGROUND: Tracheostomy can be performed safely in patients with coronavirus disease 2019 (COVID-19). However, little is known about the optimal timing, effects on outcome, and complications. METHODS: A multicenter, retrospective, observational study. This study included 153 tracheostomized COVID-19 patients from 11 intensive care units (ICUs). The primary endpoint was the median time to tracheostomy in critically ill COVID-19 patients. Secondary endpoints were survival rate, length of ICU stay, and post-tracheostomy complications, stratified by tracheostomy timing (early versus late) and technique (surgical versus percutaneous). RESULTS: The median time to tracheostomy was 15 (1-64) days. There was no significant difference in survival between critically ill COVID-19 patients who received tracheostomy before versus after day 15, nor between surgical and percutaneous techniques. ICU length of stay was shorter with early compared to late tracheostomy (p < 0.001) and percutaneous compared to surgical tracheostomy (p = 0.050). The rate of lower respiratory tract infections was higher with surgical versus percutaneous technique (p = 0.007). CONCLUSIONS: Among critically ill patients with COVID-19, neither early nor percutaneous tracheostomy improved outcomes, but did shorten ICU stay. Infectious complications were less frequent with percutaneous than surgical tracheostomy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA