RESUMO
Controlling the properties of mid- and far-infrared radiation can provide a means to transiently alter the properties of materials for novel applications. However, a limited number of optical elements are available to control its polarization state. Here we show that a 15-µm thick liquid crystal cell containing 8CB (4-octyl-4'-cyanobiphenyl) in the ordered, smectic A phase can be used as a phase retarder or wave plate. This was tested using the bright, short-pulsed (â¼1â ps) radiation centered at 16.5â µm (18.15â THz) that is emitted by a free electron laser at high repetition rate (13â MHz). These results demonstrate a possible tool for the exploration of the mid- and far-infrared range and could be used to develop novel metamaterials or extend multidimensional spectroscopy to this portion of the electromagnetic spectrum.
RESUMO
We present a comprehensive, combined experimental and theoretical study of the core-level photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil at the oxygen 1s, nitrogen 1s, carbon 1s, and the sulfur 2s and 2p edges. X-ray photoelectron spectra were calculated using equation-of-motion coupled-cluster theory (EOM-CCSD), and NEXAFS spectra were calculated using algebraic diagrammatic construction and EOM-CCSD. For the main peaks at O and N 1s as well as the S 2s edge, we find a single photoline. The S 2p spectra show a spin-orbit splitting of 1.2 eV with an asymmetric vibrational line shape. We also resolve the correlation satellites of these photolines. For the carbon 1s photoelectrons, we observe a splitting on the eV scale, which we can unanimously attribute to specific sites. In the NEXAFS spectra, we see very isolated pre-edge features at the oxygen 1s edge; the nitrogen edge, however, is very complex, in contrast to the XPS findings. The C 1s edge NEXAFS spectrum shows site-specific splitting. The sulfur 2s and 2p spectra are dominated by two strong pre-edge transitions. The S 2p spectra show again the spin-orbit splitting of 1.2 eV.
RESUMO
Multiphoton ionization (MPI) of alkyl iodides (RI, R = CnH2n+1, n = 1-4) has been investigated with femtosecond laser pulses centered at 800 and 400 nm along with photoelectron imaging detection. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectra of gas-phase RIs have been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer at the VUV DESIRS beamline of the synchrotron SOLEIL facility. The use of high-laser-field strengths in matter-radiation interaction generates highly non-linear phenomena, such as the Stark shift effect, which distorts the potential energy surfaces of molecules by varying both the energy of electronic and rovibrational states and their ionization energies. The Stark shift can then generate resonances between intermediate states and an integer number of laser photons of a given wavelength, which are commonly known as Freeman resonances. Here, we study how the molecular structure of linear and branched alkyl iodides affects the UV-VUV absorption spectrum, the MPI process, and the generation of Freeman resonances. The obtained results reveal a dominant resonance in the experiments at 800 nm, which counter-intuitively appears at the same photoelectron kinetic energy in the whole alkyl iodide series. The ionization pathways of this resonance strongly involve the 6p(2E3/2) Rydberg state with different degrees of vibrational excitation, revealing an energy compensation effect as the R-chain complexity increases.
RESUMO
Clocking of electronically and vibrationally state-resolved channels of the fast photodissociation of CH3I in the A-band is re-examined in a combined experimental and theoretical study. Experimentally, a femtosecond pump-probe scheme is employed in the modality of resonant probing by resonance enhanced multiphoton ionization (REMPI) of the methyl fragment in different vibrational states and detection through fragment velocity map ion (VMI) imaging as a function of the time delay. We revisit excitation to the center of the A-band at 268 nm and report new results for excitation to the blue of the band center at 243 nm. Theoretically, two approaches have been employed to shed light into the observations: first, a reduced dimensionality 4D nonadiabatic wavepacket calculation using the potential energy surfaces by Xie et al. [J. Phys. Chem. A 104, 1009 (2000)]; and second, a full dimension 9D trajectory surface-hopping calculation on the same potential energy surfaces, including the quantization of vibrational states of the methyl product. In addition, high level ab initio electronic structure calculations have been carried out to describe the CH3 3pz Rydberg state involved in the (2 + 1) REMPI probing process, as a function of the carbon-iodine (C-I) distance. A general qualitative agreement is obtained between experiment and theory, but the effect of methyl vibrational excitation in the umbrella mode on the clocking times is not well reproduced. The theoretical results reveal that no significant effect on the state-resolved appearance times is exerted by the nonadiabatic crossing through the conical intersection present in the first absorption band. The vibrationally state resolved clocking times observed experimentally can be rationalized when the (2 + 1) REMPI probing process is considered. None of the other probing methods applied thus far, i.e., multiphoton ionization photoelectron spectroscopy, soft X-ray inner-shell photoelectron spectroscopy, VUV single-photon ionization, and XUV core-to-valence transient absorption spectroscopy, have been able to provide quantum state-resolved (vibrational) clocking times. More experiments would be needed to disentangle the fine details in the clocking times and dissociation dynamics arising from the detection of specific quantum-states of the molecular fragments.
RESUMO
Femtosecond time-resolved velocity map ion imaging experiments are reported on the second absorption band (B-band) of ethyl iodide at 201.19 and 200.08 nm, corresponding to the 000 and 1810 transitions, i.e., the origin of the band and the first most intense vibronic state assigned to one quantum of excitation in the methyl torsion mode. Electronic predissociation lifetimes and the temporal evolution of the anisotropy have been determined by time-resolved resonance-enhanced multiphoton ionization of iodine and ethyl fragment images. A shorter lifetime measured at the origin of the band in comparison with methyl iodide indicates that predissociation in ethyl iodide is more favorable due to a stronger coupling between the initial Rydberg state and the valence repulsive state correlating with the dissociation fragments. Moreover, vibrational activity in the methyl torsion in the Rydberg state seems to enhance the probability of transfer of population to the valence repulsive state leading to a faster dissociation. The perpendicular character of the transition at early times and the loss of anisotropy as a function of time have been determined from the time-resolved angular distributions of the iodine and ethyl ion images. The initial anisotropy value is consistent with a purely perpendicular transition compatible with the excitation of the [6A'', 7A'] states with a minor parallel component to the C-I bond. The loss of initial anisotropy over time highlights the parent molecular rotation during predissociation and is compatible with a rotational temperature of the parent molecule of 100 K.
RESUMO
A comparative study of the ultrafast photodissociation dynamics of the dihalomethanes CH2ICl and CH2BrI has been carried out at 268 nm, around the maximum of the first absorption band, employing femtosecond velocity map ion imaging in conjunction with high level ab initio electronic structure calculations and full dimension on-the-fly trajectory calculations including surface hopping. Total translational energy distributions and angular distributions of the iodine fragments as well as reaction times for the C-I bond cleavage are presented and discussed along with the computed absorption spectra, potential energy curves and trajectories. The revealed dynamics is mainly governed by absorption to the 5A' state for CH2BrI while two dissociation pathways, through the 4A' or 5A' states, are in competition for CH2lCI. An anchor effect due to the substituent halogen atom (Br or Cl), which implies significant rotational motion of the dissociating molecule, characterizes the photodissociation in both dihalomethanes and leads to a remarkable rotational energy of the radical co-fragment. This energy flux into the internal degrees of freedom of the molecules is the main key factor governing the real time reaction dynamics.
RESUMO
In this paper, the design and implementation of a temperature-controlled recirculating flat jet system for liquid crystals (LCs)-based experiments are presented. In these experiments, the target liquid is usually exposed to medium to high laser fluences, possibly resonant with specific excitation, thus resulting in a change of local temperature and sudden degradation. To overcome this problem, each laser pulse must interact with a new volume of liquid, preferably with flat surfaces, while avoiding the use of substrates. A well-established solution consists of impinging two identical laminar jets that force the liquid into a radial expansion perpendicular to the plane formed by the jets, resulting in a consecutive chain of flat sheets bound by thick rims. In this context, LCs pose several challenges considering their viscosity, non-Newtonian behavior, and mesophase nature. Here, a precise control of temperature, thus mesophase, and pressure is demonstrated enabling the use of LCs in an impinging jet system. In particular, the system presented here delivers stable fluid chains of different sizes and thicknesses. The viscosity and non-Newtonian behavior of the LCs have a significant impact on the thickness of the chains as a function of the nozzle inner diameter, impinging angle, and radial distance from the impinging point. The flow rate, on the other hand, primarily affects the width and length of the liquid sheet.
RESUMO
The correlation between chemical structure and predissociation dynamics has been evaluated for a series of linear and branched alkyl iodides with increasing structural complexity by means of femtosecond time-resolved velocity map imaging experiments following excitation on the second absorption band (B-band) at around 201 nm. The time-resolved images for the iodine fragment are reported and analyzed in order to extract electronic predissociation lifetimes and the temporal evolution of the anisotropy while the experimental results are supported by ab initio calculations of the potential energy curves as a function of the C-I distance. Remarkable similarities are observed for all molecules consistent with a major predissociation of the initially populated bound Rydberg states 6Aâ³ and 7A' through a crossing with the purely repulsive states 7Aâ³, 8A' and 8Aâ³ leading to a major R + I*(2P1/2) (R = CH3, C2H5, n-C3H7, n-C4H9, i-C3H7 and t-C4H9) dissociation channel. The reported electronic predissociation lifetimes are found to decrease for an increasing size of the linear radical, reflecting the shifts observed in the position of the crossings in the potential energy curves, and very likely a greater non-adiabatic coupling between the initially populated Rydberg states and the repulsive states leading to dissociation induced by other coordinates associated to key vibrational normal modes. The loss of anisotropy is fully accounted for by the parent molecular rotation during predissociation and the rotational temperature of the parent molecule in the molecular beam is reasonably derived.