RESUMO
ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.
Assuntos
Interferon gama , Leucemia Mieloide Aguda , Linfócitos T , Animais , Humanos , Camundongos , ADP-Ribosil Ciclase 1/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/efeitos dos fármacos , Interferon gama/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacosRESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. METHODS: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. RESULTS: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16-erlotinib regimen is more effective than the selumetinib-erlotinib combination in KRAS-mutated NSCLC. CONCLUSIONS: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , MAP Quinase Quinase Quinases , MicroRNAs , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , RNA Neoplásico , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Elimination of drug-resistant leukemia stem cells (LSCs) represents a major challenge to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), the presence of CD34 and lack of CD38 expression (CD34posCD38neg) are immunophenotypic features of both LSC-enriched AML blasts and normal hematopoietic stem cells (HSCs). We report that IFN-γ induces CD38 upregulation in LSC-enriched CD34posCD38neg AML blasts, but not in CD34posCD38neg HSCs. To leverage the IFN-γ mediated CD38 up-regulation in LSCs for clinical application, we created a compact, single-chain CD38-CD3-T cell engager (CD38-BIONIC) able to direct T cells against CD38pos blasts. Activated CD4pos and CD8pos T cells not only kill AML blasts but also produce IFNγ, which leads to CD38 expression on CD34posCD38neg LSC-enriched blasts. These cells then become CD38-BIONIC targets. The net result is an immune-mediated killing of both CD38neg and CD38pos AML blasts, which culminates in LSC depletion.
RESUMO
Because most patients with multiple myeloma (MM) develop resistance to current regimens, novel approaches are needed. Genetically modified, replication-competent oncolytic viruses exhibit high tropism for tumor cells regardless of cancer stage and prior treatment. Receptors of oncolytic herpes simplex virus 1 (oHSV-1), NECTIN-1, and HVEM are expressed on MM cells, prompting us to investigate the use of oHSV-1 against MM. Using oHSV-1-expressing GFP, we found a dose-dependent increase in the GFP+ signal in MM cell lines and primary MM cells. Whereas NECTIN-1 expression is variable among MM cells, we discovered that HVEM is ubiquitously and highly expressed on all samples tested. Expression of HVEM was consistently higher on CD138+/CD38+ plasma cells than in non-plasma cells. HVEM blocking demonstrated the requirement of this receptor for infection. However, we observed that, although oHSV-1 could efficiently infect and kill all MM cell lines tested, no viral replication occurred. Instead, we identified that oHSV-1 induced MM cell apoptosis via caspase-3 cleavage. We further noted that oHSV-1 yielded a significant decrease in tumor volume in two mouse xenograft models. Therefore, oHSV-1 warrants exploration as a novel potentially effective treatment option in MM, and HVEM should be investigated as a possible therapeutic target.
RESUMO
In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFß1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFß1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFß-dependent immune escape mechanisms in neuroblastoma.
Assuntos
Exossomos/metabolismo , Células Matadoras Naturais/imunologia , MicroRNAs/genética , Neuroblastoma/prevenção & controle , Microambiente Tumoral/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In the originally published version of this Article, the positions of the final two authors in the author list were inadvertently inverted during the production process. This error has now been corrected in both the PDF and HTML versions of the Article.
RESUMO
The transcribed ultraconserved regions (T-UCRs) encode long non-coding RNAs implicated in human carcinogenesis. Their mechanisms of action and the factors regulating their expression in cancers are poorly understood. Here we show that high expression of uc.339 correlates with lower survival in 210 non-small cell lung cancer (NSCLC) patients. We provide evidence from cell lines and primary samples that TP53 directly regulates uc.339. We find that transcribed uc.339 is upregulated in archival NSCLC samples, functioning as a decoy RNA for miR-339-3p, -663b-3p, and -95-5p. As a result, Cyclin E2, a direct target of all these microRNAs is upregulated, promoting cancer growth and migration. Finally, we find that modulation of uc.339 affects microRNA expression. However, overexpression or downregulation of these microRNAs causes no significant variations in uc.339 levels, suggesting a type of interaction for uc.339 that we call "entrapping". Our results support a key role for uc.339 in lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Sequência Conservada/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: How exosomic microRNAs (miRNAs) contribute to the development of drug resistance in the context of the tumor microenvironment has not been previously described in neuroblastoma (NBL). METHODS: Coculture experiments were performed to assess exosomic transfer of miR-21 from NBL cells to human monocytes and miR-155 from human monocytes to NBL cells. Luciferase reporter assays were performed to assess miR-155 targeting of TERF1 in NBL cells. Tumor growth was measured in NBL xenografts treated with Cisplatin and peritumoral exosomic miR-155 (n = 6 mice per group) CD163, miR-155, and TERF1 levels were assessed in 20 NBL primary tissues by Human Exon Arrays and quantitative real-time polymerase chain reaction. Student's t test was used to evaluate the differences between treatment groups. All statistical tests were two-sided. RESULTS: miR-21 mean fold change (f.c.) was 12.08±0.30 (P < .001) in human monocytes treated with NBL derived exosomes for 48 hours, and miR-155 mean f.c. was 4.51±0.25 (P < .001) in NBL cells cocultured with human monocytes for 48 hours. TERF1 mean luciferase activity in miR-155 transfected NBL cells normalized to scrambled was 0.36 ± 0.05 (P <.001). Mean tumor volumes in Dotap-miR-155 compared with Dotap-scrambled were 322.80±120mm(3) and 76.00±39.3mm(3), P = .002 at day 24, respectively. Patients with high CD163 infiltrating NBLs had statistically significantly higher intratumoral levels of miR-155 (P = .04) and lower levels of TERF1 mRNA (P = .02). CONCLUSIONS: These data indicate a unique role of exosomic miR-21 and miR-155 in the cross-talk between NBL cells and human monocytes in the resistance to chemotherapy, through a novel exosomic miR-21/TLR8-NF-кB/exosomic miR-155/TERF1 signaling pathway.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , MicroRNAs/metabolismo , Monócitos/metabolismo , Neuroblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Comunicação Celular , Cisplatino/farmacologia , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , NF-kappa B/metabolismo , Neuroblastoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Cross-Talk , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo , Receptor 8 Toll-Like/metabolismo , Microambiente TumoralRESUMO
miRNAs are small noncoding RNAs with gene regulatory functions, frequently dysregulated in human cancers. Specific signatures of differentially expressed miRNAs can be used in the diagnosis of cancer and in some cases harbor prognostic implications. The biology of cancer is dictated not only by cancer cells but also by the surrounding tumor microenvironment. In particular, the role of miRNAs within the tumor microenvironment is emerging as of paramount importance. This review will focus on the current knowledge of the role of miRNAs and both cellular and stromal components of the tumor microenvironment. We will also discuss more recent findings, showing that miRNAs can be found inside of exosomes and mediate the cross-talk between cancer cells and surrounding cells, leading to the discovery of new fascinating molecular mechanisms leading to a better understanding of the cancer 'niche' and how these noncoding RNAs can become very promising diagnostic molecules.
Assuntos
Biomarcadores Tumorais/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Biomarcadores Tumorais/genética , Exossomos/metabolismo , Humanos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genéticaRESUMO
OBJECTIVE: To detect the presence of specific CTX-M class of extended spectyum ß-lactamases (ESBLs) in a collection of cephalosporin-resistant Enterobacteriaceae isolates from Bahrain. METHODS: A subset of 80 cephalosporin-resistant Enterobacteriaceae collected from Salmaniya Medical Complex, Bahrain, were characterized further for the presence of specific genogroups of CTX-M ß-lactamases by multiplex- and monoplex- PCRs. The primers used for the multiplex and monoplex PCRs were of genogroups- 1, 2, 8, 9 and 25. Sequencing of the representative isolates was performed to find the circulating CTX-M-types. RESULTS: A total of 93.8% (75/80) isolates showed the amplicons corresponding to any of the genogroups (1, 2, 8, 9, 25) and the remaining 6.2% isolates turned out negative in multiplex PCR. Some of the isolates demonstrated multiple bands corresponding to the sizes of different genogroups. Further confirmation with respective monoplex PCR on these 75 isolates demonstrated that 93.3% (70/75) harbored CTX-M genogroup-1 and 6.7% (5/75) harbored genogroup-9. We did not find the presence of genogroups 2, 8, and 25 in these isolates by monoplex PCR. Sequencing results of genogroup-1 isolates demonstrated the presence of CTX-M-15-like ESBL, however, discrepant results were noticed in genogroup-9 isolates, sequencing showed them as CTX-M-55-like ESBL. CONCLUSIONS: This is the first report from Bahrain characterizing the CTX-M genogroups of ESBLs and reporting the emergence of blaCTX-M-55-like gene in this region.
RESUMO
OBJECTIVE: To determine the molecular epidemiology of extended-spectrum ß-lactamase (ESBL) by testing a cohort of clinical ESBL-producing bacterial isolates that were isolated in the Kingdom of Bahrain. METHODS: ESBL producing Enterobacteriaceae isolates (based on phenotypic tests) were collected from Microbiology Laboratory of the Salmaniya Medical Complex, Bahrain between January-June 2006. Antibiotic susceptibility to a panel of antibiotics was performed and bla(CTX-M) genes were detected by multiplex PCR. RESULTS: A total of 230 isolates (Escherichia coli, n=180; Klebsiella pneumoniae, n=50) were studied, 98% were CTX-M type. For Escherichia coli isolates, 65 (36.1%) harbored CTXM+TEM combination and 68 (37.8%) had CTX-M alone. In contrast, for Klebsiella pneumoniae isolates only 5 (10.0%) harbored the CTX-M combination, and none had CTX-M only. The bla(CTX-M) gene was found predominantly in urine isolates (n=145/230; 63.0%). Sensitivity to imipenem and nitrofurantoin was 100% and 60%, respectively. CTX-M carriage was associated with the resistance to fluoroquinolones, trimethoprim-sulfamethoxazole and aminoglycosides. CONCLUSIONS: Our study documentes high prevalence of CTX-M ESBL type among Escherichia coli and Klebsiella from the Kingdom of Bahrain. The apparent dissemination of CTX-M producers could represent a substantial barrier in the treatment of community-acquired infections. The use of extended-spectrum cephalosporins, quinolones, and aminoglycosides is compromised, leaving carbapenems as the therapeutic option for severe infections caused by ESBL producers.
Assuntos
Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/isolamento & purificação , Antibacterianos/uso terapêutico , Barein/epidemiologia , Estudos de Coortes , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Feminino , Humanos , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Masculino , Testes de Sensibilidade Microbiana , Prevalência , beta-Lactamases/genéticaRESUMO
One approach for a safer smallpox vaccine is to utilize recombinant subunits rather than live vaccinia virus (VACV). The products of the VACV envelope genes A27L, L1R, B5R, and A33R induce protective antibodies in animal models. We propose that proteins that elicit T-cell responses, as well as neutralizing antibodies, will be important to include in a molecular vaccine. To evaluate VACV-specific memory T-cell responses, peripheral blood mononuclear cells (PBMC) from four VACV vaccinees were tested against whole VACV and the individual envelope proteins A27, B5, L1, and A33, using gamma interferon enzyme-linked immunospot and cytokine flow cytometry assays. PBMC were stimulated with autologous dendritic cells infected with VACV or electroporated with individual VACV protein mRNAs. T-cell lines from all donors, vaccinated from 1 month to over 20 years ago, recognized all four VACV envelope proteins. Both CD4(+) and CD8(+) T-cell responses to each protein were detected. Further analysis focused on representative proteins B5 and A27. PBMC from a recent vaccinee exhibited high frequencies of CD4(+) and CD8(+) T-cell precursors to both B5 (19.8 and 20%, respectively) and A27 (6.8 and 3.7%). In comparison, B5- and A27-specific T-cell frequencies ranged from 0.4 to 1.3% in a donor vaccinated 3 years ago. Multiple CD4(+) and CD8(+) T-cell epitopes were identified from both A27 and B5, using overlapping 15-mer peptides. These data suggest that all four VACV envelope proteins may contribute to protective immunity, not only by inducing antibody responses, but also by eliciting T-cell responses.
Assuntos
Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Antígenos CD/análise , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Citocinas/biossíntese , Testes Imunológicos de Citotoxicidade , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Interferon gama/biossíntese , Leucócitos Mononucleares/imunologiaRESUMO
West Nile virus (WNV) encodes two envelope proteins, premembrane (prM) and envelope (E). While the prM protein of all WNV strains contains a single N-linked glycosylation site, not all strains contain an N-linked site in the E protein. The presence of N-linked glycosylation on flavivirus E proteins has been linked to virus production, pH sensitivity, and neuroinvasiveness. Therefore, we examined the impact of prM and E glycosylation on WNV assembly and infectivity. Similar to other flaviviruses, expression of WNV prM and E resulted in the release of subviral particles (SVPs). Removing the prM glycosylation site in a lineage I or II strain decreased SVP release, as did removal of the glycosylation site in a lineage I E protein. Addition of the E protein glycosylation site in a lineage II strain that lacked this site increased SVP production. Similar results were obtained in the context of either reporter virus particles (RVPs) or infectious lineage II WNV. RVPs or virions bearing combinations of glycosylated and nonglycosylated forms of prM and E could infect mammalian, avian, and mosquito cells (BHK-21, QT6, and C6/36, respectively). Those particles lacking glycosylation on the E protein were modestly more infectious per genome copy on BHK-21 and QT6 cells, while this absence greatly enhanced the infection of C6/36 cells. Thus, glycosylation of WNV prM and E proteins can affect the efficiency of virus release and infection in a manner that is cell type and perhaps species dependent. This suggests a multifaceted role for envelope N-linked glycosylation in WNV biology and tropism.
Assuntos
Proteínas do Envelope Viral/metabolismo , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/patogenicidade , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Montagem de Vírus , Vírus do Nilo Ocidental/metabolismoRESUMO
We produced nine monoclonal antibodies (MAbs) directed against the West Nile virus E glycoprotein using three different immunization strategies: inactivated virus, naked DNA, and recombinant protein. Most of the MAbs bound to conformation dependent epitopes in domain III of the E protein. Four of the MAbs neutralized WNV infection and bound to the same region of domain III with high affinity. The neutralizing MAbs were obtained from mice immunized with inactivated virus alone or in combination with a DNA plasmid. In contrast, MAbs obtained by immunization with a soluble version of the E glycoprotein did not exhibit neutralizing activity. These non-neutralizing antibodies were cross-reactive with several other flaviviruses, including Saint Louis encephalitis, Japanese encephalitis, Yellow Fever and Powassan viruses. Interestingly, some non-neutralizing MAbs bound with high affinity to domains I or III, indicating that both affinity and the precise epitope recognized by an antibody are important determinants of WNV neutralization.