Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Hyperthermia ; 34(4): 363-372, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28610551

RESUMO

In many dermatological applications, lowering the temperature of skin and maintaining specific temperatures for extended periods of time are fundamental requirements for treatment; for example, in targeting adipose tissue and managing cutaneous pain. In this work, we investigate the feasibility of using phase changing materials (PCMs) as an alternative passive, open-loop, heat extraction method for cooling cutaneous and subcutaneous tissues. We used a finite difference parametric approach to model the spatial and temporal progression of the heat transferred from the skin to a PCM in contact with the skin surface. We modelled the thermal performance of different PCMs, including different thicknesses. In addition, we used our model to propose application strategies. Numerical simulations demonstrate the feasibility of using PCMs for extracting heat from the skin and upper fat layers, inducing and maintaining similar temperatures as those induced by active closed-loop cooling with a cold plate. In terms of development, the critical design parameters are the temperature range of solidification of the material, the thickness of the material, and the rate of melting. Our study suggests that PCM-based devices may offer an alternative skin and adipose tissue cooling method that is simple to implement and use.


Assuntos
Tecido Adiposo , Modelos Teóricos , Músculos , Transição de Fase , Temperatura Cutânea , Ágar , Estudos de Viabilidade , Temperatura Alta , Humanos , Gelo , Pele , Termodinâmica
2.
J Neurosci ; 35(8): 3663-75, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716864

RESUMO

The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.


Assuntos
Encéfalo/irrigação sanguínea , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Cardiovasculares , Animais , Encéfalo/fisiologia , Corantes Fluorescentes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
3.
Nat Commun ; 5: 5734, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25483924

RESUMO

What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/química , Animais , Arteríolas/fisiologia , Encéfalo/fisiologia , Capilares/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Modelos Teóricos , Imagem Multimodal , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA