Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(3): 396-406, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281092

RESUMO

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids-the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah-/-;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah-/-;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah-/-;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah-/-;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah-/-;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics.


Assuntos
Monofosfato de Citidina/genética , Distrofina/deficiência , Morfolinos/uso terapêutico , Animais , Cardiomiopatia Dilatada/genética , Carnitina O-Palmitoiltransferase/genética , Fator de Crescimento do Tecido Conjuntivo/análise , Monofosfato de Citidina/fisiologia , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Éxons , Terapia Genética/métodos , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Oxigenases de Função Mista/metabolismo , Distrofia Muscular de Duchenne/genética , Miocárdio/metabolismo , NADPH Oxidase 4/análise , Oligonucleotídeos Antissenso/genética , Peptídeos/genética , Fenótipo , Volume Sistólico , Proteína Desacopladora 3/genética , Função Ventricular Direita
2.
Hum Mol Genet ; 24(15): 4225-37, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25935000

RESUMO

Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model.


Assuntos
Peptídeos Penetradores de Células/genética , Distrofina/biossíntese , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/genética , Animais , Peptídeos Penetradores de Células/administração & dosagem , Modelos Animais de Doenças , Distrofina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/administração & dosagem
3.
Sci Rep ; 5: 11632, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113184

RESUMO

Duchenne muscular dystrophy (DMD) is caused by absence of the integral structural protein, dystrophin, which renders muscle fibres susceptible to injury and degeneration. This ultimately results in cardiorespiratory dysfunction, which is the predominant cause of death in DMD patients, and highlights the importance of therapeutic targeting of the cardiorespiratory system. While there is some evidence to suggest that restoring dystrophin in the diaphragm improves both respiratory and cardiac function, the role of the diaphragm is not well understood. Here using exon skipping oligonucleotides we predominantly restored dystrophin in the diaphragm and assessed cardiac function by MRI. This approach reduced diaphragmatic pathophysiology and markedly improved diaphragm function but did not improve cardiac function or pathophysiology, with or without exercise. Interestingly, exercise resulted in a reduction of dystrophin protein and exon skipping in the diaphragm. This suggests that treatment regimens may require modification in more active patients. In conclusion, whilst the diaphragm is an important respiratory muscle, it is likely that dystrophin needs to be restored in other tissues, including multiple accessory respiratory muscles, and of course the heart itself for appropriate therapeutic outcomes. This supports the requirement of a body-wide therapy to treat DMD.


Assuntos
Diafragma/fisiopatologia , Modelos Animais de Doenças , Coração/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial , Western Blotting , Diafragma/diagnóstico por imagem , Diafragma/metabolismo , Distrofina/genética , Distrofina/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Morfolinos/química , Morfolinos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Condicionamento Físico Animal/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Radiografia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
PLoS One ; 6(9): e24826, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935475

RESUMO

A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2K(b)-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.


Assuntos
Distrofias Musculares/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Nus , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
5.
PLoS Curr ; 3: RRN1296, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22318674

RESUMO

The Sleeping beauty (SB) system is a non-viral DNA based vector that has been used to stably integrate therapeutic genes into disease models. Here we report the SB system is capable of stably integrating the ΔR4-R23/CTΔ micro-dystrophin gene into a conditionally immortal dystrophin deficient muscle cell-line, H2K SF1, a murine cell model for Duchenne muscular dystrophy. Genetically corrected H2K SF1 cells retained their myogenic properties in vitro. Moreover, upon transplantation ΔR4-R23/CTΔ micro-dystrophin expression was detected within mdx nu/nu mice. Our data suggests the SB system is an effective way of stably integrating therapeutic genes into myogenic cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA