Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 193(11): 5604-12, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355920

RESUMO

Circulating monocytes carrying human CMV (HCMV) migrate into tissues, where they differentiate into HCMV-infected resident macrophages that upon interaction with bacterial products may potentiate tissue inflammation. In this study, we investigated the mechanism by which HCMV promotes macrophage-orchestrated inflammation using a clinical isolate of HCMV (TR) and macrophages derived from primary human monocytes. HCMV infection of the macrophages, which was associated with viral DNA replication, significantly enhanced TNF-α, IL-6, and IL-8 gene expression and protein production in response to TLR4 ligand (LPS) stimulation compared with mock-infected LPS-stimulated macrophages during a 6-d in vitro infection. HCMV infection also potentiated TLR5 ligand-stimulated cytokine production. To elucidate the mechanism by which HCMV infection potentiated inducible macrophage responses, we show that infection by HCMV promoted the maintenance of surface CD14 and TLR4 and TLR5, which declined over time in mock-infected macrophages, and enhanced both the intracellular expression of adaptor protein MyD88 and the inducible phosphorylation of IκBα and NF-κB. These findings provide additional information toward elucidating the mechanism by which HCMV potentiates bacteria-induced NF-κB-mediated macrophage inflammatory responses, thereby enhancing organ inflammation in HCMV-infected tissues.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Macrófagos/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/virologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia , Replicação Viral
2.
Trends Endocrinol Metab ; 15(8): 383-92, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15380810

RESUMO

Hypothalamic gonadotropin releasing hormone (GnRH I) and its pituitary receptor are responsible for the CNS regulation of reproduction. However, a second GnRH (GnRH II) is also expressed in humans and a gene that resembles the GnRH II receptor in fish has been identified in humans and monkeys. The amino-acid sequence of this newly identified, seven-transmembrane, G-protein-coupled receptor in monkeys differs from the human GnRH I receptor by having a C-terminal, cytoplasmic tail. GnRH II is approximately 400-fold more potent at GnRH II receptors than GnRH I receptors. GnRH I directly inhibits proliferation of human tumor cells, and GnRH II and its receptor might have a similar role. Limited progress has been made, however, because of difficulty translating the mRNA that encodes the human GnRH II receptor. Nevertheless, such receptors are likely to exist in humans because GnRH II is more inhibitory to tumor cell replication than GnRH I, and GnRH I and GnRH II have reciprocal effects on human decidual stromal cells in culture. The focus of this review is the identity of a possible translatable, functional GnRH II receptor in humans. The two possibilities considered are either that GnRH II receptor mRNA is expressed that encodes either 5 or 7 transmembrane domains or that a GnRH II-responsive complex is formed by the GnRH I receptor and fragments derived from the GnRH II receptor.


Assuntos
Receptores LHRH/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Receptores LHRH/química , Receptores LHRH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA