Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39268891

RESUMO

The performance capability of granular activated carbon (GAC) adsorption in terms of disinfection by-product (DBPs) removal was investigated with synthetic water containing 1) trihalomethanes (THMs), 2) haloacetronitriles (HANs), and 3) Mix-THMs & HANs. The initial 20 min of adsorption resulted in the maximum adsorption rate, with the total THMs, total HANs, and total Mix-THMs & HANs being 4.972, 2.071, and 6.460 µg/gGAC-min, respectively. GAC dosage affects the adsorption selectivity of THMs and HANs. Under a low GAC dosage, the selectivity of GAC adsorbs more bromo-THMs than chloro-THMs. The adsorption selectivity of THMs on GAC following bromoform > dibromochloromethane > bromodichloromethane > chloroform was investigated. As the GAC concentration increased, the selectivity of THM adsorption by GAC became comparable. Chloro-HAN, in contrast to THMs, has a higher adsorption selectivity than bromo-HAN. Trichloroacetonitrile was removed by GAC more rapidly than the other HAN species when the GAC dose was increased. The toxin of bromoform was primarily eliminated through GAC adsorption, caused by a greater removal rate than that of the other THMs. As an implemented measure, GAC is introduced to reduce THMs and HANs and the toxic contents associated with THMs and HANs.


Assuntos
Acetonitrilas , Carvão Vegetal , Trialometanos , Poluentes Químicos da Água , Purificação da Água , Trialometanos/química , Adsorção , Carvão Vegetal/química , Cinética , Purificação da Água/métodos , Poluentes Químicos da Água/química , Acetonitrilas/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-37501342

RESUMO

Combining dissolved organic matter (DOM) in raw water (RW) with DOM in treated wastewater (TWW) can react with chlorine and pose emerging disinfection by-products (DBPs). This study evaluated DOM based on the molecular weight (MW) size fractionation, trihalomethane, iodinated-trihalomethane, haloacetonitrile, and trichloronitromethane formation potential (THMFP, I-THMFP, HANFP, and TCNMFP) of the RW from the U-Tapao Canal, Songkhla, Thailand and the RW mixed with TWW (RW + TWW) samples. The RW and RW + TWW were treated by coagulation with poly aluminum chloride. The DOM of RW and RW + TWW and their treated water was distributed most in the MW below 1 kDa. The MWs of 3-10 kDa and 1-3 kDa were the active DOM involved in the specific THMFP for the RW + TWW. The MW of < 1 kDa in the RW + TWW resulted in a slightly high specific I-THMFP and HANFP. The MW of 1 - 3 kDa in the coagulated samples had a high specific I-THMFP. The MW of > 10 kDa in the coagulated RW + TWW was a precursor for a particular HANFP. Monitoring systems for measuring the level of TWW mixed with RW and an effective process to enhance the efficiency of traditional water treatment must be set up to produce a consumer-safe water supply.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Águas Residuárias , Peso Molecular , Tailândia , Purificação da Água/métodos , Trialometanos/análise , Poluentes Químicos da Água/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-36580059

RESUMO

Dissolved organic carbon (DOC), microplastics (MPs), and silver nanoparticles (AgNPs) in water are of major concern because of their direct and indirect toxic effects on aquatic organisms and human exposure via water. This work investigated the effect of poly aluminum chloride (PACl) coagulation for reducing DOC, MPs, and AgNPs. This work used water from a canal in Thailand with a DOC of 5.2 mg/L in the experiment. AgNPs of 5-20 mg/L were added to canal water to create synthetic water for the PACl coagulation. Polyethylene and polypropylene (PP) type MPs were identified in the raw water with Fourier transform infrared spectroscopy. Coagulation with 15 mg/L of PACl performed better in the PP removal. The PACl coagulation at dosages of 15, 40, and 70 mg/L removed DOC by 16-20%, 44-52%, and 46-63% and AgNPs by 34-90%, 53-93%, and 81-95%, respectively. The presence of AgNPs at high levels could inhibit the efficiency of DOC reduction by the PACl coagulation. The FESEM identified the adsorption of silver-containing nanoparticles onto the flocs with increased dosages of PACl. So, PACl is a coagulant in the removal of AgNPs that can reduce health hazards and eco-toxicological risks in water sources due to the release of silver.


Assuntos
Nanopartículas Metálicas , Purificação da Água , Humanos , Matéria Orgânica Dissolvida , Purificação da Água/métodos , Hidróxido de Alumínio , Prata , Microplásticos , Plásticos , Cloreto de Alumínio , Água , Floculação
4.
Environ Res ; 185: 109454, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278158

RESUMO

The main objective of this work was to investigate the feasibility of using vacuum ultraviolet (VUV, 185 + 254 nm) and ultraviolet (UV, 254 nm) for the reduction of dissolved organic nitrogen (DON) and haloacetonitrile formation potential (HANFP) of surface water and treated effluent wastewater samples. The results showed that the reduction of dissolved organic carbon (DOC), DON, hydrophobicity (HPO), absorbance at 254 nm (UV254), and fluorescence excitation-emission matrix (FEEM) of both water samples by VUV was higher compared to using UV. The addition of H2O2 remarkably improved the performances of VUV and UV. VUV/H2O2 exhibited the highest removal efficiency for DOC and DON. Even though HANFP increased at the early stage, its concentration decreased (19-72%) at the end of treatment (60 min). Decreases in DON (30-41%) and DOC (51-57%) led to HANFP reduction (53-72%). Moreover, FEEM revealed that substantial reduction in soluble microbial product-like compounds (nitrogen-rich organic) had a strong correlation with HANFP reduction, implying that this group of compounds act as a main precursor of HANs. The VUV/H2O2 system significantly reduced HANFP more than UV/H2O2 and therefore is suitable for controlling HAN precursors and HAN formation in drinking water and reclaimed wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Peróxido de Hidrogênio , Nitrogênio , Raios Ultravioleta , Vácuo , Poluentes Químicos da Água/análise
5.
Biodegradation ; 30(5-6): 375-388, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31089839

RESUMO

N-nitrosodimethylamine (NDMA) is a potential carcinogen that is produced as a disinfection by-product of chloramination or chlorination process in water and wastewater treatment systems. The ability of the dioxygenase-expressing bacteria, Rhodococcus sp. strain L4, to degrade NDMA after induction with cumene was examined in the presence and absence of its potential precursors. Dimethylamine (DMA), aniline (AN) and humic acid (HA) were selected as the precursors. The induced bacteria were able to degrade NDMA from initial concentrations ranging between 1 and 10 mg L-1 to an undetectable level (< 0.24 µg L-1) while there was no degradation of NDMA by the corresponding non-induced strain. The specific first-order degradation rate of NDMA ranged from 0.337 to 0.426 µg g-protein-1 h-1. Successful removal of all precursors was achieved by the induced bacteria. The presence of DMA had no negative effect on NDMA degradation. In contrast, a lag period was observed for the degradation of NDMA when AN or HA was present (except for the presence of 0.1 mg L-1 AN). In the presence of all precursors, NDMA degradation was negatively affected by the increased concentration (from 1 to 10 mg L-1) of all precursors.


Assuntos
Rhodococcus , Poluentes Químicos da Água , Purificação da Água , Aminas , Derivados de Benzeno , Biodegradação Ambiental , Dimetilnitrosamina
6.
Artigo em Inglês | MEDLINE | ID: mdl-31038002

RESUMO

Raw water (RW) from the Bangkok and Sing Buri water treatment plants located on the Chao Phraya River, river water, domestic wastewater (WW), and treated wastewater (TWW) from two wastewater treatment plants in Thailand were collected three times to investigate disinfection by-products' (DBPs) formation potential (FP) including trihalomethane FP (THMFP), iodo-THMFP (I-THMFP), haloacetonitriles FP (HANFP), and trichloronitromethane FP (TCNMFP). High THMFP levels were observed in river water, WW, and TWW. Considering average value, the THMFP of TWW was about two times higher than that of RW. Relatively high levels of I-THMFP were found in WW and TWW. The I-THMFP of TWW was three to seven times higher than that of RW. The HANFP of TWW was one to three times higher than that of RW. High levels of TCNMFP were found in WW and TWW. TCNMFP of TWW was six to thirteen times higher than that of RW. The discharge of TWW to RW must be prevented and controlled. The moderately positive linear relationship was obtained between dissolved organic carbon and TCNMFP in TWW. Considering measured weight concentration, THMFP was found as the highest DBPs. The highest lethal concentration 50-weighted and lowest cytotoxicity-weighted concentrations of DBPs were determined for HANFP.


Assuntos
Desinfecção , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/farmacocinética , Água Doce/análise , Humanos , Rios/química , Tailândia , Trialometanos/análise , Água/química , Abastecimento de Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-29420121

RESUMO

Raw water from the Banglen (BL) water treatment plant (WTP) and Bangkhen (BK) WTP in central Thailand and Hatyai (HY) WTP in southern Thailand was investigated for dissolved organic nitrogen (DON) reduction. The DON(mg N/L) and the dissolved organic carbon (DOC)/DON ratio were 0.34 and 21, 0.24 and 18, and 1.12 and 3 for the raw waters from BL, BK, and HY WTPs, respectively. Polyaluminum chloride (PACl) dosages of 150, 80, and 40 mg/L at pH 7 were the optimal coagulation conditions for the raw waters from BL, BK, and HY WTPs, respectively, and could reduce DON by 50%, 42%, and 42%, respectively. PACl and powder activated carbon (PAC, both in mg/L) at 150 and 20, 80 and 20, and 40 and 60 could reduce DON in the raw waters from BL, BK, and HY WTPs by 71%, 67%, and 29%, respectively. DOC/DON values of water treated with PACl were similar to those of raw water. DOC/DON values of water treated with PACl and PAC were lower than those of raw water. N-nitrosodimethylamine (NDMA) formation potentials of raw water, water treated with PACl, or both PACl and PAC, and organic fractions of BL, BK, and HY WTPs were below the detection limits of 542 and 237 ng/L, respectively. Reductions in fluorescence intensities of tryptophan-like substances at peaks 240/350 and 280/350 (nmEx/nmEm) were moderately (correlation coefficient, R = 0.85 and 0.86) and fairly (R = 0.59, 0.67, and 0.75) correlated with DON reduction.


Assuntos
Dimetilnitrosamina/química , Nitrogênio/química , Purificação da Água/métodos , Hidróxido de Alumínio/farmacologia , Carbono/química , Carvão Vegetal/química , Nitrogênio/isolamento & purificação , Compostos Orgânicos/química , Tailândia , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
8.
Artigo em Inglês | MEDLINE | ID: mdl-27166524

RESUMO

The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Trialometanos/análise , Poluentes Químicos da Água/análise , Água/química , Carbono/análise , Concentração de Íons de Hidrogênio , Compostos Orgânicos/análise , Temperatura , Tailândia , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-27314493

RESUMO

This research aimed at determining the dimethylamine (DMA), diethylamine (DEA), dibutylamine (DBA), and aromatic aniline (AN) in reservoir and canal water in the U-Tapao River Basin, Songkhla, Thailand. The trihalomethane formation potential (THMFP) and N-nitrosodimethylamine formation potential (NDMA-FP) of the reservoir and canal water were analyzed. Water samples from two reservoirs and raw water from water treatment plants at upstream, midstream, and downstream locations of the canal were collected twice. The analysis of the DMA, DEA, DBA, and AN were conducted using gas chromatography and spectrofluorometry techniques. The DMA, DEA, and DBA levels in the reservoir and canal waters ranged from not detectable (ND) to 10 µg/L and from ND to 21.2 µg/L, respectively. AN was detected from 123 to 129 ng/L and from 112 to 177 ng/L in the reservoir and canal waters, respectively. The DMA, DEA, DBA, and AN exhibited two fluorescent peaks at 230nmEx/345nmEm and 280 nmEx/355nmEm. These two peaks corresponded to the peak positions of tryptophan. Detection limits of DMA, DEA, and DBA for fluorescent analysis were 500 µg/L whereas that of AN and tryptophan were 10 and 0.5 µg/L, respectively. The NDMA-FP measured in all the water samples was lower than the detection limit of 237 ng/L. THMFP ranged from 175 to 248 µg/L and 214 to 429 µg/L was detected in the reservoir and canal waters, respectively. The THMFP/dissolved organic carbon (DOC) of the reservoir and canal waters were comparable within the ranges of 73 to 131 µg THMFP/mg DOC.


Assuntos
Compostos de Anilina/análise , Butilaminas/análise , Dimetilaminas/análise , Água Doce/química , Poluentes Químicos da Água/análise , Dimetilnitrosamina/química , Desinfecção , Limite de Detecção , Tailândia , Trialometanos/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA