Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain Sci ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38928561

RESUMO

Disease prediction is greatly challenged by the scarcity of datasets and privacy concerns associated with real medical data. An approach that stands out to circumvent this hurdle is the use of synthetic data generated using Generative Adversarial Networks (GANs). GANs can increase data volume while generating synthetic datasets that have no direct link to personal information. This study pioneers the use of GANs to create synthetic datasets and datasets augmented using traditional augmentation techniques for our binary classification task. The primary aim of this research was to evaluate the performance of our novel Conditional Deep Convolutional Neural Network (C-DCNN) model in classifying brain tumors by leveraging these augmented and synthetic datasets. We utilized advanced GAN models, including Conditional Deep Convolutional Generative Adversarial Network (DCGAN), to produce synthetic data that retained essential characteristics of the original datasets while ensuring privacy protection. Our C-DCNN model was trained on both augmented and synthetic datasets, and its performance was benchmarked against state-of-the-art models such as ResNet50, VGG16, VGG19, and InceptionV3. The evaluation metrics demonstrated that our C-DCNN model achieved accuracy, precision, recall, and F1 scores of 99% on both synthetic and augmented images, outperforming the comparative models. The findings of this study highlight the potential of using GAN-generated synthetic data in enhancing the training of machine learning models for medical image classification, particularly in scenarios with limited data available. This approach not only improves model accuracy but also addresses privacy concerns, making it a viable solution for real-world clinical applications in disease prediction and diagnosis.

2.
Sci Rep ; 14(1): 11781, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783089

RESUMO

This study explored the application of machine learning in predicting post-treatment outcomes for chronic neck pain patients undergoing a multimodal program featuring cervical extension traction (CET). Pre-treatment demographic and clinical variables were used to develop predictive models capable of anticipating modifications in cervical lordotic angle (CLA), pain and disability of 570 patients treated between 2014 and 2020. Linear regression models used pre-treatment variables of age, body mass index, CLA, anterior head translation, disability index, pain score, treatment frequency, duration and compliance. These models used the sci-kit-learn machine learning library within Python for implementing linear regression algorithms. The linear regression models demonstrated high precision and accuracy, and effectively explained 30-55% of the variability in post-treatment outcomes, the highest for the CLA. This pioneering study integrates machine learning into spinal rehabilitation. The developed models offer valuable information to customize interventions, set realistic expectations, and optimize treatment strategies based on individual patient characteristics as treated conservatively with rehabilitation programs using CET as part of multimodal care.


Assuntos
Dor Crônica , Aprendizado de Máquina , Cervicalgia , Tração , Humanos , Cervicalgia/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Dor Crônica/terapia , Adulto , Tração/métodos , Resultado do Tratamento , Vértebras Cervicais
3.
Diagnostics (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732335

RESUMO

BACKGROUND: In planning radiotherapy treatments, computed tomography (CT) has become a crucial tool. CT scans involve exposure to ionizing radiation, which can increase the risk of cancer and other adverse health effects in patients. Ionizing radiation doses for medical exposure must be kept "As Low As Reasonably Achievable". Very few articles on guidelines for radiotherapy-computed tomography scans are available. This paper reviews the current literature on radiation dose optimization based on the effective dose and diagnostic reference level (DRL) for head, neck, and pelvic CT procedures used in radiation therapy planning. This paper explores the strategies used to optimize radiation doses, and high-quality images for diagnosis and treatment planning. METHODS: A cross-sectional study was conducted on 300 patients with head, neck, and pelvic region cancer in our institution. The DRL, effective dose, volumetric CT dose index (CTDIvol), and dose-length product (DLP) for the present and optimized protocol were calculated. DRLs were proposed for the DLP using the 75th percentile of the distribution. The DLP is a measure of the radiation dose received by a patient during a CT scan and is calculated by multiplying the CT dose index (CTDI) by the scan length. To calculate a DRL from a DLP, a large dataset of DLP values obtained from a specific imaging procedure must be collected and can be used to determine the median or 75th-percentile DLP value for each imaging procedure. RESULTS: Significant variations were found in the DLP, CTDIvol, and effective dose when we compared both the standard protocol and the optimized protocol. Also, the optimized protocol was compared with other diagnostic and radiotherapy CT scan studies conducted by other centers. As a result, we found that our institution's DRL was significantly low. The optimized dose protocol showed a reduction in the CTDIvol (70% and 63%), DLP (60% and 61%), and effective dose (67% and 62%) for both head, neck, and pelvic scans. CONCLUSIONS: Optimized protocol DRLs were proposed for comparison purposes.

4.
Diagnostics (Basel) ; 13(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673101

RESUMO

Monkeypox is a zoonotic viral disease caused by the monkeypox virus. After its recent outbreak, it has become clear that a rapid, accurate, and reliable diagnosis may help reduce the risk of a future outbreak. The presence of skin lesions is one of the most prominent symptoms of the disease. However, this symptom is also peculiar to chickenpox. The resemblance in skin lesions in the human subject may disrupt effective diagnosis and, as a result, lead to misdiagnosis. Such misdiagnosis can lead to the further spread of the disease as it is a communicable disease and can eventually result in an outbreak. As deep learning (DL) algorithms have recently been regarded as a promising technique in medical fields, we have been attempting to integrate a well-trained DL algorithm to assist in the early detection and classification of skin lesions in human subjects. This study used two open-sourced digital skin images for monkeypox and chickenpox. A two-dimensional convolutional neural network (CNN) consisting of four convolutional layers was applied. Afterward, three MaxPooling layers were used after the second, third, and fourth convolutional layers. Finally, we evaluated the performance of our proposed model with state-of-the-art deep-learning models for skin lesions detection. Our proposed CNN model outperformed all DL models with a test accuracy of 99.60%. In addition, a weighted average precision, recall, F1 score of 99.00% was recorded. Subsequently, Alex Net outperformed other pre-trained models with an accuracy of 98.00%. The VGGNet consisting of VGG16 and VGG19 performed least well with an accuracy of 80.00%. Due to the uniqueness of the proposed model and image augmentation techniques applied, the proposed CNN model is generalized and avoids over-fitting. This model would be helpful for the rapid and accurate detection of monkeypox using digital skin images of patients with suspected monkeypox.

5.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832106

RESUMO

The brain is an intrinsic and complicated component of human anatomy. It is a collection of connective tissues and nerve cells that regulate the principal actions of the entire body. Brain tumor cancer is a serious mortality factor and a highly intractable disease. Even though brain tumors are not considered a fundamental cause of cancer deaths worldwide, about 40% of other cancer types are metastasized to the brain and transform into brain tumors. Computer-aided devices for diagnosis through magnetic resonance imaging (MRI) have remained the gold standard for the diagnosis of brain tumors, but this conventional method has been greatly challenged with inefficiencies and drawbacks related to the late detection of brain tumors, high risk in biopsy procedures, and low specificity. To circumvent these underlying hurdles, machine learning models have recently been developed to enhance computer-aided diagnosis tools for advanced, precise, and automatic early detection of brain tumors. This study takes a novel approach to evaluate machine learning models (support vector machine (SVM), random forest (RF), gradient-boosting model (GBM), convolutional neural network (CNN), K-nearest neighbor (KNN), AlexNet, GoogLeNet, CNN VGG19, and CapsNet) used for the early detection and classification of brain tumors by deploying the multicriteria decision-making method called fuzzy preference ranking organization method for enrichment evaluations (PROMETHEE), based on selected parameters, in this study: prediction accuracy, precision, specificity, recall, processing time, and sensitivity. To validate the results of our proposed approach, we performed a sensitivity analysis and cross-checking analysis with the PROMETHEE model. The CNN model, with an outranking net flow of 0.0251, is considered the most favorable model for the early detection of brain tumors. The KNN model, with a net flow of -0.0154, is the least appealing option. The findings of this study support the applicability of the proposed approach for making optimal choices regarding the selection of machine learning models. The decision maker is thus afforded the opportunity to expand the range of considerations which they must rely on in selecting the preferred models for early detection of brain tumors.

6.
Diagnostics (Basel) ; 12(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36359544

RESUMO

Malaria is a significant health concern in many third-world countries, especially for pregnant women and young children. It accounted for about 229 million cases and 600,000 mortality globally in 2019. Hence, rapid and accurate detection is vital. This study is focused on achieving three goals. The first is to develop a deep learning framework capable of automating and accurately classifying malaria parasites using microscopic images of thin and thick peripheral blood smears. The second is to report which of the two peripheral blood smears is the most appropriate for use in accurately detecting malaria parasites in peripheral blood smears. Finally, we evaluate the performance of our proposed model with commonly used transfer learning models. We proposed a convolutional neural network capable of accurately predicting the presence of malaria parasites using microscopic images of thin and thick peripheral blood smears. Model evaluation was carried out using commonly used evaluation metrics, and the outcome proved satisfactory. The proposed model performed better when thick peripheral smears were used with accuracy, precision, and sensitivity of 96.97%, 97.00%, and 97.00%. Identifying the most appropriate peripheral blood smear is vital for improved accuracy, rapid smear preparation, and rapid diagnosis of patients, especially in regions where malaria is endemic.

7.
Diagnostics (Basel) ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35741136

RESUMO

On average, breast cancer kills one woman per minute. However, there are more reasons for optimism than ever before. When diagnosed early, patients with breast cancer have a better chance of survival. This study aims to employ a novel approach that combines artificial intelligence and a multi-criteria decision-making method for a more robust evaluation of machine learning models. The proposed machine learning techniques comprise various supervised learning algorithms, while the multi-criteria decision-making technique implemented includes the Preference Ranking Organization Method for Enrichment Evaluations. The Support Vector Machine, having achieved a net outranking flow of 0.1022, is ranked as the most favorable model for the early detection of breast cancer. The net outranking flow is the balance between the positive and negative outranking flows. This indicates that the higher the net flow, the better the alternative. K-nearest neighbor, logistic regression, and random forest classifier ranked second, third, and fourth, with net flows of 0.0316, -0.0032, and -0.0541, respectively. The least preferred alternative is the naive Bayes classifier with a net flow of -0.0766. The results obtained in this study indicate the use of the proposed method in making a desirable decision when selecting the most appropriate machine learning model. This gives the decision-maker the option of introducing new criteria into the decision-making process.

8.
J Healthc Eng ; 2021: 1566834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567477

RESUMO

Cancer is a disease with rare, diverse symptoms, causing abnormal cell growth in an uncontrolled way, leading to cell damage, apoptosis, and eventually death of the patient. This study uses the Fuzzy PROMETHEE technique to develop a new path for cancer treatment based on nanoparticles (NPs) applications, used in controlled anticancer drug delivery (drug release, toxicity, and unspecific site targeting) to enhance patient safety. The different nanoparticles employed in the drug delivery analysis are gold nanoparticles (AuNPs), liposomes, dendrimers, polymeric micelles (PMs), and quantum dots (QDs). Fuzzy predictable preference organization mode and evaluation multicriteria choice were used as tactics in making the best decision using the data from the factors of cost, size, shape, surface charge, ligand type, pH and temperature stimuli, biocompatibility, accumulation ratio, toxicity, specificity, stability, efficacy, adverse effect, and safety factor of the NPs. The results obtained from the total net flow of the visual PROMETHEE scenario for anticancer drug delivery, based on NPs data analysis, show that AuNPs are ranked the highest among the other NPs. The Phi values obtained for the NPs are as follows: AuNPs (0.1428), PMs (0.0280), QDs (-0.0467), dendrimers (-0.0593), and liposomes (-0.0649). This study highlights the optimal choice of NPs as an intelligent drug delivery system that facilitates therapeutic efficiency, where cancer cells are accurately targeted to enhance treatment quality and patient safety.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias , Antineoplásicos/uso terapêutico , Ouro/uso terapêutico , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico
9.
Comput Math Methods Med ; 2020: 9756518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014121

RESUMO

The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms "deep learning", "neural networks", "COVID-19", and "chest CT". At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico por imagem , Pandemias , Pneumonia Viral/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Inteligência Artificial , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Pneumonia/classificação , Pneumonia/diagnóstico por imagem , Pneumonia Viral/epidemiologia , Interpretação de Imagem Radiográfica Assistida por Computador/estatística & dados numéricos , Radiografia Torácica/estatística & dados numéricos , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA