Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioscience ; 73(11): 808-813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38125825

RESUMO

Over decades, pesticide regulations have cycled between approval and implementation, followed by the discovery of negative effects on nontarget organisms that result in new regulations, pesticides, and harmful effects. This relentless pattern undermines the capacity to protect the environment from pesticide hazards and frustrates end users that need pest management tools. Wild pollinating insects are in decline, and managed pollinators such as honey bees are experiencing excessive losses, which threatens sustainable food security and ecosystem function. An increasing number of studies demonstrate the negative effects of field-realistic exposure to pesticides on pollinator health and fitness, which contribute to pollinator declines. Current pesticide approval processes, although they are superior to past practices, clearly continue to fail to protect pollinator health. In the present article, we provide a conceptual framework to reform cyclical pesticide approval processes and better protect pollinators.

2.
Learn Behav ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430032

RESUMO

A new study shows that bumblebees learn socially, and this resulted in a novel behavior becoming dominant across a group. These findings highlight the opportunity going forward to use social insects to address how simple cognitive mechanisms can underpin the development of complex behavioral phenomena.

3.
Biol Lett ; 18(3): 20210549, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259941

RESUMO

While classic models of animal decision-making assume that individuals assess the absolute value of options, decades of research have shown that rewards are often evaluated relative to recent experience, creating incentive contrast effects. Contrast effects are often assumed to be purely sensory, yet consumer and experimental psychology tell us that label-based expectations can affect value perception in humans and rodents. However, this has rarely been tested in non-model systems. Bumblebees forage on a variety of flowers that vary in their signals and rewards and show contrast when rewards are lowered. We manipulated bees' expectations of stimulus quality, before downshifting the reward to induce incentive contrast. We found that contrast effects were not solely driven by experience with a better reward, but also influenced by experience with associated stimuli. While bees' initial response did not differ between treatments, individuals were faster to accept the lower-quality reward when it was paired with a novel stimulus. We explored the boundaries of these label-based expectations by testing bees along a stimulus gradient and found that expectations generalized to similar stimuli. Such reference-dependent evaluations may play an important role in bees' foraging choices, with the potential to impact floral evolution and plant community dynamics.


Assuntos
Flores , Motivação , Animais , Abelhas
4.
Ecol Lett ; 24(12): 2586-2597, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34488245

RESUMO

Neonicotinoid insecticides can have sub-lethal effects on bees which has led to calls from conservationists for a global ban. In contrast, agrochemical companies argue that neonicotinoids do not harm honeybees at field-realistic levels. However, the focus on honeybees neglects the potential impact on other bee species. We conducted a meta-analysis to assess whether field-realistic neonicotinoid exposure has sub-lethal effects on non-Apis bees. We extracted data from 53 papers (212 effects sizes) and found that it largely consisted of two genera: bumblebees (Bombus) and mason bees (Osmia), highlighting a substantial taxonomic knowledge gap. Neonicotinoid exposure negatively affected reproductive output across all bees and impaired bumblebee colony growth and foraging. Neonicotinoids also reduced Bombus, but not Osmia, individual development (growth and body size). Our results suggest that restrictions on neonicotinoids should benefit bee populations and highlight that the current regulatory process does not safeguard pollinators from the unwanted consequences of insecticide use.


Assuntos
Inseticidas , Animais , Abelhas , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos
5.
Biol Lett ; 17(8): 20210280, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34376073

RESUMO

Species' cognitive traits are shaped by their ecology, and even within a species, cognition can reflect the behavioural requirements of individuals with different roles. Social insects have a number of discrete roles (castes) within a colony and thus offer a useful system to determine how ecological requirements shape cognition. Bumblebee queens are a critical point in the lifecycle of their colony, since its future success is reliant on a single individual's ability to learn about floral stimuli while finding a suitable nest site; thus, one might expect particularly adept learning capabilities at this stage. I compared wild Bombus vosnesenskii queens and workers on their ability to learn a colour association and found that queens performed better than workers. In addition, queens of another species, B. insularis, a cuckoo species with a different lifecycle but similar requirements at this stage, performed equally well as the non-parasitic queens. To control for differences in foraging experience, I then repeated this comparison with laboratory-based B. impatiens and found that unmated queens performed better than workers. These results add to the body of work on how ecology shapes cognition and opens the door to further research in comparative cognition using wild bees.


Assuntos
Cognição , Aprendizagem , Animais , Abelhas
6.
Oecologia ; 196(4): 963-976, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34250559

RESUMO

Animals develop food preferences based on taste, nutritional quality and to avoid environmental toxins. Yet, measuring preferences in an experimental setting can be challenging since ecologically realistic assays can be time consuming, while simplified assays may not capture natural sampling behavior. Field realism is a particular challenge when studying behavioral responses to environmental toxins in lab-based assays, given that toxins can themselves impact sampling behavior, masking our ability to detect preferences. We address these challenges by comparing different experimental methods for measuring sucrose concentration preference in bumble bees (Bombus impatiens), evaluating the utility of two preference chamber-based methods (ad libitum versus a novel restricted-sampling assay) in replicating bees' preferences when they fly freely between artificial flowers in a foraging arena. We find that the restricted-sampling method matched a free-flying scenario more closely than the ad libitum protocol, and we advocate for expanded use of this approach, given its ease of implementation. We then performed a second experiment using the new protocol to ask whether consuming the neonicotinoid pesticide imidacloprid, known to suppress feeding motivation, interfered with the expression of sucrose preferences. After consuming imidacloprid, bees were less likely to choose the higher-quality sucrose even as they gained experience with both options. Thus, we provide evidence that pesticides interfere with bees' ability to discriminate between floral rewards that differ in value. This work highlights a simple protocol for assessing realistic foraging preferences in bees and provides an efficient way for researchers to measure the impacts of anthropogenic factors on preference expression.


Assuntos
Inseticidas , Sacarose , Animais , Abelhas , Comportamento Alimentar , Laboratórios , Neonicotinoides
7.
Proc Biol Sci ; 287(1935): 20201265, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32993471

RESUMO

Systemic insecticides, such as neonicotinoids, are a major contributor towards beneficial insect declines. This has led to bans and restrictions on neonicotinoid use globally, most noticeably in the European Union, where four commonly used neonicotinoids (imidacloprid, thiamethoxam, clothianidin and thiacloprid) are banned from outside agricultural use. While this might seem like a victory for conservation, restrictions on neonicotinoid use will only benefit insect populations if newly emerging insecticides do not have similar negative impacts on beneficial insects. Flupyradifurone and sulfoxaflor are two novel insecticides that have been registered for use globally, including within the European Union. These novel insecticides differ in their chemical class, but share the same mode of action as neonicotinoids, raising the question as to whether they have similar sub-lethal impacts on beneficial insects. Here, we conducted a systematic literature search of the potential sub-lethal impacts of these novel insecticides on beneficial insects, quantifying these effects with a meta-analysis. We demonstrate that both flupyradifurone and sulfoxaflor have significant sub-lethal impacts on beneficial insects at field-realistic levels of exposure. These results confirm that bans on neonicotinoid use will only protect beneficial insects if paired with significant changes to the agrochemical regulatory process. A failure to modify the regulatory process will result in a continued decline of beneficial insects and the ecosystem services on which global food production relies.


Assuntos
Insetos , Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Ecossistema , Guanidinas , Neonicotinoides , Nitrocompostos , Piridinas , Compostos de Enxofre , Tiametoxam , Tiazinas , Tiazóis
8.
Biol Lett ; 15(7): 20190359, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362607

RESUMO

Neonicotinoid pesticides can impair bees' ability to learn and remember information about flowers, critical for effective foraging. Although these effects on cognition may contribute to broader effects on health and performance, to date they have largely been assayed in simplified protocols that consider learning in a single sensory modality, usually olfaction. Given that real flowers display a variety of potentially useful signals, we assessed the effects of acute neonicotinoid exposure on multimodal learning in free-flying bumblebees. We found that neonicotinoid consumption differentially impacted learning of floral stimuli, impairing scent, but not colour, learning. These findings raise questions about the mechanisms by which pesticides might differentially impair sensory systems, with implications for how neonicotinoids affect multiple aspects of bee ecology.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Flores , Aprendizagem , Neonicotinoides , Nitrocompostos
9.
Biol Lett ; 12(7)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27405383

RESUMO

Pollen plays a dual role as both a gametophyte and a nutritional reward for pollinators. Although pollen chemistry varies across plant species, its functional significance in pollination has remained obscure, in part because little is known about how floral visitors assess it. Bees rely on pollen for protein, but whether foragers evaluate its chemistry is unclear, as it is primarily consumed by larvae. We asked whether the chemical composition of pollen influences bumblebees' foraging behaviour. Using putatively sweet and bitter pollen blends, we found that chemical composition influenced two aspects of bee behaviour relevant to plant fitness: the amount of pollen collected and the likelihood of subsequently visiting a visually similar flower. These findings offer a new perspective on the nutritional ecology of plant-pollinator interactions, as they show that pollen's taste may mediate its collection and transfer.


Assuntos
Abelhas/fisiologia , Pólen , Animais , Comportamento Apetitivo , Celulose , Cor , Flores , Prunus avium , Quinina , Sacarose , Paladar , Temperatura
10.
Biol Lett ; 11(9): 20150628, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-26423070

RESUMO

Bees are model organisms for the study of learning and memory, yet nearly all such research to date has used a single reward, nectar. Many bees collect both nectar (carbohydrates) and pollen (protein) on a single foraging bout, sometimes from different plant species. We tested whether individual bumblebees could learn colour associations with nectar and pollen rewards simultaneously in a foraging scenario where one floral type offered only nectar and the other only pollen. We found that bees readily learned multiple reward-colour associations, and when presented with novel floral targets generalized to colours similar to those trained for each reward type. These results expand the ecological significance of work on bee learning and raise new questions regarding the cognitive ecology of pollination.


Assuntos
Abelhas/fisiologia , Cor , Aprendizagem , Néctar de Plantas , Pólen , Animais , Comportamento de Escolha , Sinais (Psicologia) , Comportamento Alimentar , Recompensa
11.
Trends Ecol Evol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019730

RESUMO

The cognitive ecology of pollination is most often studied using simple rewards, yet flowers often contain multiple types of chemically complex rewards, each varying along multiple dimensions of quality. In this review we highlight ways in which reward complexity can impact pollinator cognition, demonstrating the need to consider ecologically realistic rewards to fully understand plant-pollinator interactions. We show that pollinators' reward preferences can be modulated by reward chemistry and the collection of multiple reward types. We also discuss how reward complexity can mediate pollinator learning through a variety of mechanisms, both with and without reward preference being altered. Finally, we show how an understanding of decision-making strategies is necessary to predict how pollinators' evaluation of reward options depends on the other options available.

12.
Ecology ; 105(6): e4310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828716

RESUMO

Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees. Laboratory-based studies with commercial pollinators have consistently shown that pesticide exposure can impact bee behavior, with cascading effects on foraging performance, reproductive success, and pollination services. However, these studies typically assess only one chemical, neglecting the complexity of real-world exposure to multiple agrochemicals and other stressors. In the summer of 2020, we collected wild-foraging workers of the common eastern bumblebee, Bombus impatiens, from five squash (Cucurbita) agricultural sites (organic and conventional farms), selected to represent a range of agrochemical, including neonicotinoid insecticide, use. For each bee, we measured two behaviors relevant to foraging success and previously shown to be impacted by pesticide exposure: sucrose responsiveness and locomotor activity. Following behavioral testing, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) chemical analysis to detect and quantify the presence of 92 agrochemicals in each bumblebee. Bees collected from our sites did not vary in pesticide exposure as expected. While we found a limited occurrence of neonicotinoids, two fungicides (azoxystrobin and difenoconazole) were detected at all sites, and the pesticide synergist piperonyl butoxide (PBO) was present in all 123 bees. We found that bumblebees that contained higher levels of PBO were less active, and this effect was stronger for larger bumblebee workers. While PBO is unlikely to be the direct cause of the reduction in bee activity, it could be an indicator of exposure to pyrethroids and/or other insecticides that we were unable to directly quantify, but which PBO is frequently tank-mixed with during pesticide applications on crops. We did not find a relationship between agrochemical exposure and bumblebee sucrose responsiveness. To our knowledge, this is the first evidence of a sublethal behavioral impact of agrochemical exposure on wild-foraging bees.


Assuntos
Agroquímicos , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Agroquímicos/toxicidade , Locomoção/efeitos dos fármacos , Inseticidas/toxicidade , Exposição Ambiental
13.
R Soc Open Sci ; 10(4): 221322, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035286

RESUMO

Judgement bias, or 'optimism' and 'pessimism', has been demonstrated across many taxa, yet the cognitive mechanisms underlying this behaviour remain unclear. In an optimism paradigm, animals are trained to an association, and, if given a positive experience, behave more favourably towards 'ambiguous' stimuli. We tested whether this effect could be explained by changes to stimulus response gradients by giving bees a task where their response was tested across a wider gradient of stimuli than typically tested. In line with previous work, we found that bees given a positive experience demonstrated judgement bias, being more likely to visit ambiguous stimuli. However, bees were also less likely to visit a stimulus on the other side of the rewarded stimulus (S+), and as such had a shifted stimulus response curve, showing a diminished peak shift response. In two follow-up experiments we tested the hypothesis that our manipulation altered bees' stimulus response curves via changes to the peak shift response by reducing peak shift in controls. We found that, in support of our hypothesis, elimination of peak shift also eliminated differences between treatments. Our results point towards a cognitive explanation of 'optimistic' behaviour in non-human animals and offer a new paradigm for considering emotion-like states.

14.
Curr Biol ; 33(2): R44-R48, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693303

RESUMO

Intensive agriculture is reliant on pesticides to control crop pests, but these chemicals can have negative environmental consequences. This has resulted in repeated calls for pesticide risk assessments to be modified to better protect ecosystem services such as pollination. However, the pesticide licensing process is complex, and consequently there is often confusion between risk assessments where the environmental impact of pesticide use is considered, and risk management where licensing decisions are made. Using bees as a case study, we provide a roadmap for how pesticides are licensed for use in the European Union. By outlining the regulatory process, we highlight key data gaps that need to be addressed to generate a holistic approach to environmental risk assessment. Such an approach is vital to protect pollinators and wildlife more broadly from the unintended consequences of pesticide use.


Assuntos
Praguicidas , Abelhas , Animais , Ecossistema , Agricultura/métodos , Meio Ambiente , Medição de Risco , Polinização
15.
Sci Total Environ ; 858(Pt 2): 159839, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334673

RESUMO

Globally documented wild bee declines threaten sustainable food production and natural ecosystem functioning. Urban environments are often florally abundant, and consequently can contain high levels of pollinator diversity compared with agricultural environments. This has led to the suggestion that urban environments are an increasingly important habitat for pollinators. However, pesticides, such as commercial bug sprays, have a range of lethal and sub-lethal impacts on bees and are widely available for public use, with past work indicating that managed bees (honeybees and bumblebees) are exposed to a range of pesticides in urban environments. Despite this, we still have a poor understanding of (i) whether wild bees foraging in urban environments are exposed to pesticides and (ii) if exposure differs between genera. Here we assessed pesticide exposure in 8 bee genera foraging across multiple urban landscapes. We detected 13 different pesticides, some at concentrations known to have sub-lethal impacts on pollinators. Both the likelihood of pesticides being detected, and the concentrations observed, were higher for larger bees, likely due to their greater foraging ranges. Our results suggest that restricting agrochemical use in urban environments, where the economic benefits are limited, is a simple way to reduce anthropogenic stress on wild bees.


Assuntos
Praguicidas , Abelhas , Animais , Praguicidas/análise , Polinização , Jardins , Ecossistema , Pradaria
16.
Environ Pollut ; 307: 119575, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691445

RESUMO

Bees are vital pollinators of crops and wildflowers and as such, wild bee declines threaten food security and functioning ecosystems. One driver of bee declines is the use of systemic insecticides, such as commonly used neonicotinoids. However, rising pest resistance to neonicotinoids, and restrictions on their use in the EU, has increased the demand for replacement insecticides to control crop pests. Flupyradifurone is a novel systemic insecticide that is thought to be relatively 'bee safe' although it can be present in the nectar and pollen of bee-attractive crops. Bumblebees rely on learning to forage efficiently, and thus detriments to learning performance may have downstream consequences on their ability to forage. While neonicotinoids negatively influence bumblebee learning and memory, whether this is also the case for their replacements is unclear. Here, we exposed bumblebees (Bombus impatiens) to an acute, field-realistic dose of flupyradifurone before training them to learn either an olfactory or colour association. We found that flupyradifurone impaired bumblebees' learning and memory performance in both olfactory and visual modalities. Flupyradifurone-treated bees were also less motivated to feed. Given the similarity between the detriments to cognition found here and those previously reported for neonicotinoids, this implies that these insecticides may have similar sub-lethal effects on bees. Restrictions on neonicotinoid use are therefore unlikely to benefit bees if novel insecticides like flupyradifurone are used as an alternative, highlighting that current agrochemical risk assessments are not protecting bees from the unwanted consequences of pesticide use. Sub-lethal assessments on non-Apis bees should be made mandatory in agrochemical regulation to ensure that novel insecticides are indeed 'bee safe'.


Assuntos
Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Abelhas , Ecossistema , Inseticidas/toxicidade , Motivação , Neonicotinoides , Piridinas
17.
iScience ; 25(8): 104765, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35942103

RESUMO

Nectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants' capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar. We detected the highest concentration of these chemicals in Citrus, alongside the well-studied alkaloid caffeine. We explored the separate and interactive effects of these chemicals on insect pollinators in a series of behavioral experiments on bumblebees (Bombus impatiens). We found that octopamine and tyramine interacted with caffeine to alter key aspects of bee behavior relevant to plant fitness (sucrose responsiveness, long-term memory, and floral preferences). These results provide evidence for a means by which synergistic or antagonistic nectar chemistry might influence pollinators.

19.
Environ Entomol ; 50(6): 1299-1303, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34487150

RESUMO

Bumblebees are important pollinators of agricultural crops and wildflowers, but many species are in decline. Neonicotinoid insecticides are the most commonly used insecticide globally and can have negative sublethal effects on bumblebee colony growth and reproduction. Individual bumblebees can visit hundreds to thousands of flowers a day to forage for their colony. As such, they are a model species for studying optimal foraging, and small impairments to an individual's foraging decisions may have compounding effects on the colony's nutritional intake. We exposed bumblebees (Bombus impatiens) to an acute, field-realistic dose of the neonicotinoid insecticide imidacloprid, before allowing them to forage on an artificial floral array. We found that neonicotinoid-exposed bumblebees made suboptimal foraging decisions, as they were more likely to visit flowers located further apart than control bees. This indicates that for a given flower patch, individual bees exposed to a neonicotinoid will likely use more energy and forage less efficiency than unexposed bees, although further studies that directly measure energetic cost are required to confirm this. Given the robust and growing body of evidence demonstrating negative sublethal effects of neonicotinoids on bees, sublethal assessments on non-Apis bees should be made mandatory within the regulatory process.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Produtos Agrícolas , Flores , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA