Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Med ; 29(1): 18, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721084

RESUMO

Triosephosphate isomerase (TPI) is best known as a glycolytic enzyme that interconverts the 3-carbon sugars dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). TPI is an essential enzyme that is required for the catabolism of DHAP and a net yield of ATP from anaerobic glucose metabolism. Loss of TPI function results in the recessive disease TPI Deficiency (TPI Df). Recently, numerous lines of evidence suggest the TPI protein has other functions beyond glycolysis, a phenomenon known as moonlighting or gene sharing. Here we review the numerous functions ascribed to TPI, including recent findings of a nuclear role of TPI implicated in cancer pathogenesis and chemotherapy resistance.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Erros Inatos do Metabolismo dos Carboidratos , Humanos , Triose-Fosfato Isomerase/genética , Núcleo Celular , Glucose
2.
J Physiol ; 599(1): 171-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991751

RESUMO

KEY POINTS: Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. We show that deletion of miR-133b exacerbates the dystrophic phenotype of DMD-afflicted skeletal muscle by dysregulating muscle stem cells involved in muscle biogenesis, in addition to affecting signalling pathways related to inflammation and fibrosis. Our results provide evidence that miR-133b may underlie DMD pathology by affecting the proliferation and differentiation of muscle stem cells. ABSTRACT: Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA miR-133b has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of P30 mdx mice is smaller in size and exhibits a thickened interstitial space containing more mononucleated cells. Additional analysis revealed that miR-133b deletion influences muscle fibre regeneration, satellite cell proliferation and differentiation, and induces widespread transcriptomic changes in mdx muscle. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Animais , Diferenciação Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos mdx , MicroRNAs/genética , Músculo Esquelético , Distrofia Muscular de Duchenne/genética
3.
Neurobiol Dis ; 152: 105299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600953

RESUMO

Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Proteínas de Drosophila/metabolismo , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster
4.
Sci Rep ; 14(1): 18575, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127839

RESUMO

Triosephosphate isomerase deficiency (TPI Df) is a rare multisystem disorder with severe neuromuscular symptoms which arises exclusively from mutations within the TPI1 gene. Studies of TPI Df have been limited due to the absence of mammalian disease models and difficulties obtaining patient samples. Recently, we developed a novel murine model of TPI Df which models the most common disease-causing mutation in humans, TPI1E105D. Using our model in the present study, the underlying pathogenesis of neuromuscular symptoms has been elucidated. This is the first report detailing studies of neuromuscular pathology within a murine model of TPI Df. We identified several contributors to neuromuscular symptoms, including neurodegeneration in the brain, alterations in neurotransmission at the neuromuscular junction, and reduced muscle fiber size. TPI Df mice also exhibited signs of cardiac pathology and displayed a deficit in vascular smooth muscle functionality. Together, these findings provide insight into pathogenesis of the neuromuscular symptoms in TPI Df and can guide the future development of therapeutics.


Assuntos
Modelos Animais de Doenças , Junção Neuromuscular , Triose-Fosfato Isomerase , Animais , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Camundongos , Junção Neuromuscular/patologia , Junção Neuromuscular/metabolismo , Anemia Hemolítica Congênita não Esferocítica/genética , Anemia Hemolítica Congênita não Esferocítica/patologia , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Doenças Neuromusculares/etiologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Mutação , Humanos
5.
Curr Res Neurobiol ; 3: 100062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405628

RESUMO

Triosephosphate isomerase deficiency (TPI Df) is a rare, aggressive genetic disease that typically affects young children and currently has no established treatment. TPI Df is characterized by hemolytic anemia, progressive neuromuscular degeneration, and a markedly reduced lifespan. The disease has predominately been studied using invertebrate and in vitro models, which lack key aspects of the human disease. While other groups have generated mammalian Tpi1 mutant strains, specifically with the mouse mus musculus, these do not recapitulate key characteristic phenotypes of the human disease. Reported here is the generation of a novel murine model of TPI Df. CRISPR-Cas9 was utilized to engineer the most common human disease-causing mutation, Tpi1 E105D , and Tpi1 null mice were also isolated as a frame-shifting deletion. Tpi1 E105D/null mice experience a markedly shortened lifespan, postural abnormalities consistent with extensive neuromuscular dysfunction, hemolytic anemia, pathological changes in spleen, and decreased body weight. There is a ∼95% reduction in TPI protein levels in Tpi1 E105D/null animals compared to wild-type littermates, consistent with decreased TPI protein stability, a known cause of TPI Df. This work illustrates the capability of Tpi1 E105D/null mice to serve as a mammalian model of human TPI Df. This work will allow for advancement in the study of TPI Df within a model with physiology similar to humans. The development of the model reported here will enable mechanistic studies of disease pathogenesis and, importantly, efficacy testing in a mammalian system for emerging TPI Df treatments.

6.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315486

RESUMO

Triosephosphate isomerase (TPI) deficiency (TPI Df) is an untreatable glycolytic enzymopathy that results in hemolytic anemia, progressive muscular impairment and irreversible brain damage. Although there is a 'common' mutation (TPIE105D), other pathogenic mutations have been described. We identified patients who were compound heterozygous for a newly described mutation, TPIQ181P, and the common TPIE105D mutation. Intriguingly, these patients lacked neuropathy or cognitive impairment. We then initiated biochemical and structural studies of TPIQ181P. Surprisingly, we found that purified TPIQ181P protein had markedly impaired catalytic properties whereas crystallographic studies demonstrated that the TPIQ181P mutation resulted in a highly disordered catalytic lid. We propose that genetic complementation occurs between the two alleles, one with little activity (TPIQ181P) and one with low stability (TPIE105D). Consistent with this, TPIQ181P/E105D fibroblasts exhibit a significant reduction in the TPI protein. These data suggest that impaired stability, and not catalytic activity, is a better predictor of TPI Df severity. Lastly, we tested two recently discovered chemical modulators of mutant TPI stability, itavastatin and resveratrol, and observed a significant increase in TPI in TPIQ181P/E105D patient cells.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Triose-Fosfato Isomerase , Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos , Humanos , Quinolinas , Resveratrol/farmacologia , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética
7.
SLAS Discov ; 26(8): 1029-1039, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34167376

RESUMO

Triose phosphate isomerase deficiency (TPI Df) is an untreatable, childhood-onset glycolytic enzymopathy. Patients typically present with frequent infections, anemia, and muscle weakness that quickly progresses with severe neuromusclar dysfunction requiring aided mobility and often respiratory support. Life expectancy after diagnosis is typically ~5 years. There are several described pathogenic mutations that encode functional proteins; however, these proteins, which include the protein resulting from the "common" TPIE105D mutation, are unstable due to active degradation by protein quality control (PQC) pathways. Previous work has shown that elevating mutant TPI levels by genetic or pharmacological intervention can ameliorate symptoms of TPI Df in fruit flies. To identify compounds that increase levels of mutant TPI, we have developed a human embryonic kidney (HEK) stable knock-in model expressing the common TPI Df protein fused with green fluorescent protein (HEK TPIE105D-GFP). To directly address the need for lead TPI Df therapeutics, these cells were developed into an optical drug discovery platform that was implemented for high-throughput screening (HTS) and validated in 3-day variability tests, meeting HTS standards. We initially used this assay to screen the 446-member National Institutes of Health (NIH) Clinical Collection and validated two of the hits in dose-response, by limited structure-activity relationship studies with a small number of analogs, and in an orthogonal, non-optical assay in patient fibroblasts. The data form the basis for a large-scale phenotypic screening effort to discover compounds that stabilize TPI as treatments for this devastating childhood disease.


Assuntos
Descoberta de Drogas/métodos , Estabilidade Enzimática/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas , Triose-Fosfato Isomerase/química , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Células HEK293 , Humanos , Mutação , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética
8.
Proc Biol Sci ; 275(1652): 2733-41, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18713720

RESUMO

Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.


Assuntos
Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Ecossistema , Eutrofização/efeitos dos fármacos , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento , Análise de Variância , Animais , Inibidores do Crescimento/farmacologia , Especificidade da Espécie
9.
Aquat Toxicol ; 100(4): 365-72, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20863581

RESUMO

The increasing frequency of devastating blooms of the harmful dinoflagellate Karenia brevis has motivated investigations into understanding bloom dynamics and the potential for mitigation. Previous findings indicate that waterborne concentrations of the most abundant brevetoxin (brevetoxin B or PbTx-2) associated with these blooms decrease in the presence of other phytoplankton species. The current study explores the mechanism of brevetoxin removal from seawater upon exposure to phytoplankton competitors. Live phytoplankton removed waterborne brevetoxins more rapidly than lysates, but phytoplankton did not need to be in a state of active metabolism. Biomolecules, probably proteins, exuded from phytoplankton appeared to be responsible for the loss of brevetoxins, either by irreversible complexation or by degradation. Selective removal of PbTx-2 and -1, but not PbTx-3, -9 or BTX-B5, by cultured phytoplankton revealed that brevetoxin removal is dependent upon the presence of an α,ß-unsaturated aldehyde functionality. The mechanism of biotransformation appears to be common among phytoplankton, since members of various taxonomic groups including diatoms, dinoflagellates, and a cryptophyte each caused 75-90% decrease in PbTx-2 concentration, as did a generic protein (bovine serum albumin) added to seawater at high concentration. These findings support the concept of potentially using competitor phytoplankton species or compounds derived from phytoplankton as biocontrol agents for waterborne toxins associated with red tide.


Assuntos
Toxinas Marinhas/metabolismo , Oxocinas/metabolismo , Fitoplâncton/metabolismo , Venenos/metabolismo , Biotransformação , Diatomáceas/efeitos dos fármacos , Diatomáceas/metabolismo , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Fitoplâncton/efeitos dos fármacos , Venenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA