Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 15(5): e2002214, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28542493

RESUMO

Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.


Assuntos
Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Algoritmos , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Cerulenina/farmacologia , Deutério , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/química , Deleção de Genes , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Difração de Nêutrons , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Espalhamento a Baixo Ângulo , Estereoisomerismo
2.
Biochemistry ; 57(40): 5864-5876, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204415

RESUMO

The genome of the hyperthermophile Thermotoga maritima contains three isoforms of maltose binding protein (MBP) that are high-affinity receptors for di-, tri-, and tetrasaccharides. Two of these proteins (tmMBP1 and tmMBP2) share significant sequence identity, approximately 90%, while the third (tmMBP3) shares less than 40% identity. MBP from Escherichia coli (ecMBP) shares 35% sequence identity with the tmMBPs. This subset of MBP isoforms offers an interesting opportunity to investigate the mechanisms underlying the evolution of substrate specificity and affinity profiles in a genome where redundant MBP genes are present. In this study, the X-ray crystal structures of tmMBP1, tmMBP2, and tmMBP3 are reported in the absence and presence of oligosaccharides. tmMBP1 and tmMBP2 have binding pockets that are larger than that of tmMBP3, enabling them to bind to larger substrates, while tmMBP1 and tmMBP2 also undergo substrate-induced hinge bending motions (∼52°) that are larger than that of tmMBP3 (∼35°). Small-angle X-ray scattering was used to compare protein behavior in solution, and computer simulations provided insights into dynamics of these proteins. Comparing quantitative protein-substrate interactions and dynamical properties of tmMBPs with those of the promiscuous ecMBP and disaccharide selective Thermococcus litoralis MBP provides insights into the features that enable selective binding. Collectively, the results provide insights into how the structure and dynamics of tmMBP homologues enable them to differentiate between a myriad of chemical entities while maintaining their common fold.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Ligantes de Maltose/química , Maltose/química , Thermotoga maritima/química , Sítios de Ligação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Ligantes de Maltose/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Thermotoga maritima/genética
3.
Biochemistry ; 57(29): 4263-4275, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901984

RESUMO

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.


Assuntos
2-Propanol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/enzimologia , Solventes/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Cristalografia por Raios X/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Eletricidade Estática , Tetra-Hidrofolato Desidrogenase/química , Viscosidade , Água/metabolismo
4.
Biochim Biophys Acta ; 1857(9): 1455-1463, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27114180

RESUMO

The Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria transfers excitation energy from the chlorosome antenna complex to the reaction center. In understanding energy transfer in the FMO protein, the individual contributions of the bacteriochlorophyll pigments to the FMO complex's absorption spectrum could provide detailed information with which molecular and energetic models can be constructed. The absorption properties of the pigments, however, are such that their spectra overlap significantly. To overcome this, we used site-directed mutagenesis to construct a series of mutant FMO complexes in the model green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum). Two cysteines at positions 49 and 353 in the C. tepidum FMO complex, which reside near hydrogen bonds between BChls 2 and 3, and their amino acid binding partner serine 73 and tyrosine 15, respectively, were changed to alanine residues. The resulting C49A, C353A, and C49A C353A double mutants were analyzed with a combination of optical absorption and circular dichroism (CD) spectroscopies. Our results revealed changes in the absorption properties of several underlying spectral components in the FMO complex, as well as the redox behavior of the complex in response to the reductant sodium dithionite. A high-resolution X-ray structure of the C49A C353A double mutant reveals that these spectral changes appear to be independent of any major structural rearrangements in the FMO mutants. Our findings provide important tests for theoretical calculations of the C. tepidum FMO absorption spectrum, and additionally highlight a possible role for cysteine residues in the redox activity of the pigment-protein complex.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Dicroísmo Circular , Cisteína/química , Conformação Proteica
5.
J Am Chem Soc ; 139(3): 1098-1105, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783480

RESUMO

The structurally and dynamically perturbed hydration shells that surround proteins and biomolecules have a substantial influence upon their function and stability. This makes the extent and degree of water perturbation of practical interest for general biological study and industrial formulation. We present an experimental description of the dynamical perturbation of hydration water around green fluorescent protein in solution. Less than two shells (∼5.5 Å) were perturbed, with dynamics a factor of 2-10 times slower than bulk water, depending on their distance from the protein surface and the probe length of the measurement. This dependence on probe length demonstrates that hydration water undergoes subdiffusive motions (τ ∝ q-2.5 for the first hydration shell, τ ∝ q-2.3 for perturbed water in the second shell), an important difference with neat water, which demonstrates diffusive behavior (τ ∝ q-2). These results help clarify the seemingly conflicting range of values reported for hydration water retardation as a logical consequence of the different length scales probed by the analytical techniques used.


Assuntos
Proteínas de Fluorescência Verde/química , Água/química , Simulação de Dinâmica Molecular , Soluções
6.
J Am Chem Soc ; 137(50): 15772-80, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26415030

RESUMO

The lipid raft hypothesis presents insights into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. As a result, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of ∼13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. From additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.


Assuntos
Microdomínios da Membrana , Nanoestruturas
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 414-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531475

RESUMO

Ketol-isomerases catalyze the reversible isomerization between aldoses and ketoses. D-Xylose isomerase carries out the first reaction in the catabolism of D-xylose, but is also able to convert D-glucose to D-fructose. The first step of the reaction is an enzyme-catalyzed ring opening of the cyclic substrate. The active-site amino-acid acid/base pair involved in ring opening has long been investigated and several models have been proposed. Here, the structure of the xylose isomerase E186Q mutant with cyclic glucose bound at the active site, refined against joint X-ray and neutron diffraction data, is reported. Detailed analysis of the hydrogen-bond networks at the active site of the enzyme suggests that His54, which is doubly protonated, is poised to protonate the glucose O5 position, while Lys289, which is neutral, promotes deprotonation of the glucose O1H hydroxyl group via an activated water molecule. The structure also reveals an extended hydrogen-bonding network that connects the conserved residues Lys289 and Lys183 through three structurally conserved water molecules and residue 186, which is a glutamic acid to glutamine mutation.


Assuntos
Aldose-Cetose Isomerases/química , Proteínas de Bactérias/química , Glucose/química , Prótons , Streptomyces/química , Aldose-Cetose Isomerases/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Glucose/análogos & derivados , Ligação de Hidrogênio , Modelos Moleculares , Mutação , Difração de Nêutrons , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento a Baixo Ângulo , Streptomyces/enzimologia , Difração de Raios X
8.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328249

RESUMO

Human manganese superoxide dismutase (MnSOD) is a crucial oxidoreductase that maintains the vitality of mitochondria by converting O 2 ●- to O 2 and H 2 O 2 with proton-coupled electron transfers (PCETs). Since changes in mitochondrial H 2 O 2 concentrations are capable of stimulating apoptotic signaling pathways, human MnSOD has evolutionarily gained the ability to be highly inhibited by its own product, H 2 O 2 . A separate set of PCETs is thought to regulate product inhibition, though mechanisms of PCETs are typically unknown due to difficulties in detecting the protonation states of specific residues that coincide with the electronic state of the redox center. To shed light on the underlying mechanism, we combined neutron diffraction and X-ray absorption spectroscopy of the product-bound, trivalent, and divalent states to reveal the all-atom structures and electronic configuration of the metal. The data identifies the product-inhibited complex for the first time and a PCET mechanism of inhibition is constructed.

9.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853997

RESUMO

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O 2 •- ) to molecular oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK a due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.

10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2157-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100333

RESUMO

The first high-resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory is reported. Neutron diffraction data extending to 1.65 Šresolution were collected from a relatively small 0.7 mm(3) PfRd crystal using 2.5 d (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the D atoms of the protein and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolution (1.5 Å) from crystals with volume <1.0 mm(3) and with unit-cell edges <100 Å. Beamline features include novel elliptical focusing mirrors that deliver neutrons into a 2.0 × 3.2 mm focal spot at the sample position with full-width vertical and horizontal divergences of 0.5 and 0.6°, respectively. Variable short- and long-wavelength cutoff optics provide automated exchange between multiple-wavelength configurations (λmin = 2.0, 2.8, 3.3 Što λmax = 3.0, 4.0, 4.5, ∼20 Å). These optics produce a more than 20-fold increase in the flux density at the sample and should help to enable more routine collection of high-resolution data from submillimetre-cubed crystals. Notably, the crystal used to collect these PfRd data was 5-10 times smaller than those previously reported.


Assuntos
Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Nêutrons , Pyrococcus furiosus/química , Rubredoxinas/química , Proteínas Arqueais/química , Cristalografia por Raios X/instrumentação , Ligação de Hidrogênio , Espalhamento de Radiação , Difração de Raios X
11.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 1): 35-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22194331

RESUMO

Neutron crystallography is a powerful technique for experimental visualization of the positions of light atoms, including hydrogen and its isotope deuterium. In recent years, structural biologists have shown increasing interest in the technique as it uniquely complements X-ray crystallographic data by revealing the positions of D atoms in macromolecules. With this regained interest, access to macromolecular neutron crystallography beamlines is becoming a limiting step. In this report, it is shown that a rapid data-collection strategy can be a valuable alternative to longer data-collection times in appropriate cases. Comparison of perdeuterated rubredoxin structures refined against neutron data sets collected over hours and up to 5 d shows that rapid neutron data collection in just 14 h is sufficient to provide the positions of 269 D atoms without ambiguity.


Assuntos
Hidrogênio/análise , Difração de Nêutrons/métodos , Proteínas/química , Hidrogênio/química , Modelos Moleculares , Estrutura Terciária de Proteína , Fatores de Tempo
12.
J Virol ; 84(10): 5270-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20219936

RESUMO

The complex natural cycle of vectored viruses that transition between host species, such as between insects and mammals, makes understanding the full life cycle of the virus an incredibly complex problem. Sindbis virus, an arbovirus and prototypic alphavirus having an inner protein shell and an outer glycoprotein coat separated by a lipid membrane, is one example of a vectored virus that transitions between vertebrate and insect hosts. While evidence of host-specific differences in Sindbis virus has been observed, no work has been performed to characterize the impact of the host species on the structure of the virus. Here, we report the first study of the structural differences between Sindbis viruses grown in mammalian and insect cells, which were determined by small-angle neutron scattering (SANS), a nondestructive technique that did not decrease the infectivity of the Sindbis virus particles studied. The scattering data and modeling showed that, while the radial position of the lipid bilayer did not change significantly, it was possible to conclude that it did have significantly more cholesterol when the virus was grown in mammalian cells. Additionally, the outer protein coat was found to be more extended in the mammalian Sindbis virus. The SANS data also demonstrated that the RNA and nucleocapsid protein share a closer interaction in the mammalian-cell-grown virus than in the virus from insect cells.


Assuntos
Espalhamento a Baixo Ângulo , Sindbis virus/crescimento & desenvolvimento , Vírion/química , Animais , Linhagem Celular , Cricetinae , Culicidae , Sindbis virus/química , Vírion/isolamento & purificação
13.
J Phys Condens Matter ; 33(42)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298526

RESUMO

The continuing increase in the brilliance of synchrotron radiation beamlines allows for many new and exciting experiments that were impossible before the present generation of synchrotron radiation sources came on line. However, the exposure to such intense beams also tests the limits of what samples can endure. Whilst the effects of radiation induced damage in a static experiment often can easily be recognized by changes in the diffraction or spectroscopy curves, the influence of radiation on chemical or physical processes, where one expects curves to change, is less often recognized and can be misinterpreted as a 'real' result instead of as a 'radiation influenced result'. This is especially a concern in time-resolved materials science experiments using techniques as powder diffraction, small angle scattering and x-ray absorption spectroscopy. Here, the effects of radiation (5-50 keV) on some time-resolved processes in different types of materials and in different physical states are discussed. We show that such effects are not limited to soft matter and biology but rather can be found across the whole spectrum of materials research, over a large range of radiation doses and is not limited to very high brilliance beamlines.

14.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 5): 558-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20445231

RESUMO

The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Pyrococcus furiosus/química , Rubredoxinas/química , Difração de Nêutrons/métodos , Difração de Raios X/métodos
15.
Methods Enzymol ; 634: 69-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093843

RESUMO

IMAGINE is a high intensity, quasi-Laue neutron crystallography beamline developed at the 85MW High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). This state-of-the-art facility for neutron-diffraction enables neutron protein structures to be determined at or near atomic resolutions from crystals with volumes of <1mm3 and unit cell edges of <150Å. The beamline features include elliptical focusing mirrors that deliver neutrons into a 2.0×3.2mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations. The beamline is equipped with a single-axis goniometer, neutron-sensitive cylindrical image plate detector and room temperature and cryogenic sample environments. This article describes the beamline components, the diffractometer and the data collection and data analysis protocols that are used, and outlines the protein deuteration, crystallization and conventional crystallography capabilities that are available to users at ORNL's neutron facilities. We also present examples of the scientific questions being addressed at this beamline and highlight important findings in enzyme chemistry that have been made possible by IMAGINE.


Assuntos
Difração de Nêutrons , Síncrotrons , Cristalografia , Cristalografia por Raios X , Nêutrons , Proteínas
16.
Methods Enzymol ; 634: 153-175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093831

RESUMO

Dynamic nuclear polarization (DNP) can provide a powerful means to amplify neutron diffraction from biological crystals by 10-100-fold, while simultaneously enhancing the visibility of hydrogen by an order of magnitude. Polarizing the neutron beam and aligning the proton spins in a polarized sample modulates the coherent and incoherent neutron scattering cross-sections of hydrogen, in ideal cases amplifying the coherent scattering by almost an order of magnitude and suppressing the incoherent background to zero. This chapter describes current efforts to develop and apply DNP techniques for spin polarized neutron protein crystallography, highlighting concepts, experimental design, labeling strategies and recent results, as well as considering new strategies for data collection and analysis that these techniques could enable.


Assuntos
Hidrogênio , Difração de Nêutrons , Cristalografia , Nêutrons , Prótons
17.
Front Microbiol ; 11: 914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499768

RESUMO

Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells - as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins.

18.
Methods Mol Biol ; 544: 281-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19488706

RESUMO

Neutron scattering and diffraction provide detailed information on the structure and dynamics of biological materials across time and length scales that range from picoseconds to nanoseconds and from 1 to 10,000 A, respectively. The particular sensitivity of neutrons to the isotopes of hydrogen makes selective deuterium labeling of biological systems an essential tool for maximizing the return from neutron scattering experiments. In neutron protein crystallography, the use of fully deuterated protein crystals improves the signal-to-noise ratio of the data by an order of magnitude and enhances the visibi-lity of the molecular structure (Proc Natl Acad Sci U S A 97:3872-3877, 2000; Acta Crystallogr D Biol Crystallogr 61:1413-1417, 2005; Acta Crystallogr D Biol Crystallogr 61:539-544, 2005). In solution and surface scattering experiments, the incorporation of deuterium-labeled subunits or components into complex assemblies or structures makes it possible to deconvolute the scattering of the labeled and unlabeled subunits and to determine their relative dispositions within the complex (J Mol Biol 93:255-265, 1975). With multiple labeling patterns, it is also possible to reconstruct the locations of multiple subunits in ternary and higher-order complexes (Science 238:1403-1406, 1987; J Mol Biol 271:588-601, 1997; J Biol Chem 275:14432-14439, 2000; Biochemistry 42:7790-7800, 2003). In inelastic neutron scattering experiments, which probe hydrogen dynamics in biological materials, the application of site, residue, or region-specific hydrogen-deuterium-labeling patterns can be used to distinguish and highlight the specific dynamics within a system (Proc Natl Acad Sci U S A 95:4970-4975, 1998).Partial, selective, or fully deuterated proteins can be readily produced by endogenous expression of recombinant proteins in bacterial systems that are adapted to growth in D(2)O solution and using selectively deuterated carbon sources. Adaptation can be achieved either by gradual step-wise increase in D(2)O concentration or, more directly, by plating cells on media of choice and selecting colonies that perform best for subsequent culture and inoculation. Scale-up growth and expression is typically performed in standard shaker flasks using either commercial or "home-grown" rich media (derived, for example, from cell lysates produced from algae grown in D(2)O) or under more controlled conditions in defined minimal media. Cell growth is typically slower in deuterated media (>5 times slower) and yields are correspondingly lower. Once the target protein has been expressed, purification proceeds by the protocols developed for the hydrogenated protein. The deuteration levels of the final product are determined by mass spectrometry.


Assuntos
Deutério/química , Difração de Nêutrons/métodos , Proteínas/química , Bactérias/metabolismo , Sítios de Ligação , Reatores Biológicos , Cristalografia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
19.
Curr Opin Struct Biol ; 16(5): 630-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16963258

RESUMO

Hydrogen atoms are rarely seen in X-ray protein crystal structures, but are readily visualized by neutron crystallography, even at typical (1.5-2.5A) resolutions. Recent advances in neutron beamlines and deuterium labeling technologies have dramatically extended the scale and range of structures studied. High-quality neutron data can be collected to near atomic resolution ( approximately 1.5-2.5A) for proteins of 50-175kDa molecular weight, from perdeuterated samples, from crystals with volumes of 0.1mm(3) and at cryogenic temperatures (15K). These structures are providing unique and complementary insights into hydrogen-bonding interactions, protonation states, catalytic mechanisms and hydration states of biological structures that are not available from X-ray analysis alone. The new generation of spallation neutron sources promises further 10-50-fold gains in performance.


Assuntos
Hidrogênio/química , Proteínas/química , Animais , Cristalografia/tendências , Previsões , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-19194016

RESUMO

A preliminary neutron crystallographic study of the proteolytic enzyme proteinase K is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the vapor-diffusion method. Data were collected to a resolution of 2.3 A on the LADI-III diffractometer at the Institut Laue-Langevin (ILL) in 2.5 d. The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure with the aim of providing relevant information on the location of H atoms, particularly at the active site. This information will contribute to further understanding of the molecular mechanisms underlying the catalytic activity of proteinase K and to an enriched understanding of the subtilisin clan of serine proteases.


Assuntos
Endopeptidase K/química , Difração de Nêutrons/métodos , Nêutrons , Domínio Catalítico , Cristalografia por Raios X/métodos , Proteínas Fúngicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA