Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Cell Physiol ; 236(3): 1822-1839, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32716094

RESUMO

Obesity is associated with an increase in adipose tissue, which is mediated by hyperplasia and hypertrophy. Therefore, inhibiting cell proliferation during mitotic clonal expansion (MCE) is one of the major strategies for preventing obesity. The antagonistic effects of Garcinia cambogia (G. cambogia) on obesity have been studied in animal experimental models. However, the effects of G. cambogia extract on MCE, and the underlying molecular mechanisms, are poorly understood. In this study, 3T3-L1 cells were used to investigate whether G. cambogia extract affected cell proliferation during MCE and to identify target molecules for any anti-adipogenic activity. G. cambogia extract suppressed isobutylmethylxanthine and dexamethasone-and-insulin (MDI)-induced adipogenesis at an early stage by attenuating MCE. In G. cambogia extract-treated preadipocytes, MDI-induced cell proliferation and cell cycle progression were inhibited by G0 /G1 arrest due to an increase in p21 and p27 expression, and inhibition of cyclin-dependent kinase 2, cyclin E1 expression, and retinoblastoma (Rb) phosphorylation. In addition, the MDI-induced phosphorylation and subsequent translocation into the nucleus of p90 ribosomal S6 kinase (p90RSK) and signal transducer and activator of transcription (Stat) 3 were suppressed. Specific inhibitors of p90RSK (FMK) and Stat3 (stattic) regulated cell proliferation and adipogenesis. In conclusion, this study demonstrated that G. cambogia extract inhibited MCE by regulating p90RSK, Stat3, and cell cycle proteins, leading to G0 /G1 arrest. These findings provide new insight into the mechanism by which G. cambogia suppresses adipocyte differentiation and show that p90RSK is critical for adipogenesis as a new molecular target.


Assuntos
Adipogenia , Garcinia cambogia/química , Mitose , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , 1-Metil-3-Isobutilxantina/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Clonais , Dexametasona/farmacologia , Insulina/farmacologia , Camundongos , Mitose/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
J Pharmacol Exp Ther ; 378(1): 10-19, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33846234

RESUMO

The secretion of platelet-derived growth factors (PDGFs) into vascular smooth muscle cells (VSMCs) induced by specific stimuli, such as oxidized low-density lipoprotein (LDL) cholesterol, initially increases the proliferation and migration of VSMCs, and continuous stimulation leads to VSMC apoptosis, resulting in the formation of atheroma. Autophagy suppresses VSMC apoptosis, and statins can activate autophagy. Thus, this study aimed to investigate the mechanism of the autophagy-mediated vasoprotective activity of rosuvastatin, one of the most potent statins, in VSMCs continuously stimulated with PDGF-BB, a PDGF isoform, at a high concentration (100 ng/ml) to induce phenotypic switching of VSMC. Rosuvastatin inhibited apoptosis in a concentration-dependent manner by reducing cleaved caspase-3 and interleukin-1ß (IL-1ß) levels and reduced intracellular reactive oxygen species (ROS) levels in PDGF-stimulated VSMCs. It also inhibited PDGF-induced p38 phosphorylation and increased the expression of microtubule-associated protein light chain 3 (LC3) and the conversion of LC3-I to LC3-II in PDGF-stimulated VSMCs. The ability of rosuvastatin to inhibit apoptosis and p38 phosphorylation was suppressed by treatment with 3-methyladenine (an autophagy inhibitor) but promoted by rapamycin (an autophagy activator) treatment. SB203580, a p38 inhibitor, reduced the PDGF-induced increase in intracellular ROS levels and inhibited the formation of cleaved caspase-3, indicating the suppression of apoptosis. In carotid ligation model mice, rosuvastatin decreased the thickness and area of the intima and increased the area of the lumen. In conclusion, our observations suggest that rosuvastatin inhibits p38 phosphorylation through autophagy and subsequently reduces intracellular ROS levels, leading to its vasoprotective activity. SIGNIFICANCE STATEMENT: This study shows the mechanism responsible for the vasoprotective activity of rosuvastatin in vascular smooth muscle cells under prolonged platelet-derived growth factor stimulation. Rosuvastatin inhibits p38 activation through autophagy, thereby suppressing intracellular reactive oxygen species levels, leading to the inhibition of apoptosis and reductions in the intima thickness and area. Overall, these results suggest that rosuvastatin can be used as a novel treatment to manage chronic vascular diseases such as atherosclerosis.


Assuntos
Autofagia/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/toxicidade , Rosuvastatina Cálcica/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Acta Pharmacol Sin ; 42(8): 1311-1323, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32973326

RESUMO

Propionate is a short-chain fatty acid (SCFA) mainly produced from carbohydrates by gut microbiota. Sodium propionate (SP) has shown to suppress the invasion in G protein-coupled receptor 41 (GPR41) and GPR43-overexpressing breast cancer cells. In this study we investigated the effects of SP on the proliferation, apoptosis, autophagy, and antioxidant production of breast cancer cells. We showed that SP (5-20 mM) dose-dependently inhibited proliferation and induced apoptosis in breast cancer cell lines JIMT-1 (ER-negative and HER2-expressing) and MCF7 (ER-positive type), and this effect was not affected by PTX, thus not mediated by the GPR41 or GPR43 SCFA receptors. Meanwhile, we demonstrated that SP treatment increased autophagic and antioxidant activity in JIMT-1 and MCF7 breast cancer cells, which might be a compensatory mechanism to overcome SP-induced apoptosis, but were not sufficient to overcome SP-mediated suppression of proliferation and induction of apoptosis. We revealed that the anticancer effect of SP was mediated by inhibiting JAK2/STAT3 signaling which led to cell-cycle arrest at G0/G1 phase, and increasing levels of ROS and phosphorylation of p38 MAPK which induced apoptosis. In nude mice bearing JIMT-1 and MCF7 cells xenograft, administration of SP (20 mg/mL in drinking water) significantly suppressed tumor growth by regulating STAT3 and p38 in tumor tissues. These results suggest that SP suppresses proliferation and induces apoptosis in breast cancer cells by inhibiting STAT3, increasing the ROS level and activating p38. Therefore, SP is a candidate therapeutic agent for breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Propionatos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos Nus , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638797

RESUMO

Breast cancer (BC) a very common cancer in women worldwide. Triple negative breast cancer (TNBC) has been shown to have a poor prognosis with a high level of tumor metastatic spread. Here, the inhibitory effects of ginsenoside-Rh1 (Rh1) on BC metastasis, and its underlying signaling pathway in TNBC were investigated. Rh1-treated MDA-MB-231 cells were analyzed for metastasis using a wound healing assay, transwell migration and invasion assay, western blotting, and qRT-PCR. Rh1 treatment significantly inhibited BC metastasis by inhibiting the both protein and mRNA levels of MMP2, MMP9, and VEGF-A. Further, Rh1-mediated inhibitory effect on BC migration was associated with mitochondrial ROS generation. Rh1 treatment significantly eliminated STAT3 phosphorylation and NF-κB transactivation to downregulate metastatic factors, such as MMP2, MMP9, and VEGF-A. In addition, Mito-TEMPO treatment reversed Rh1 effects on the activation of STAT3, NF-κB, and their transcriptional targets. Rh1 further enhanced the inhibitory effects of STAT3 or NF-κB specific inhibitor, stattic or BAY 11-7082 on MMP2, MMP9, and VEGF-A expression, respectively. In summary, our results revealed the potent anticancer effect of Rh1 on TNBC migration and invasion through mtROS-mediated inhibition of STAT3 and NF-κB signaling.


Assuntos
Movimento Celular , Ginsenosídeos/farmacologia , Invasividade Neoplásica , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Ginsenosídeos/uso terapêutico , Humanos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/fisiopatologia
5.
Biochem Biophys Res Commun ; 523(1): 267-273, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31864701

RESUMO

Angiotensin II (Ang II) has been reported to induce vascular smooth muscle cell (VSMC) proliferation and migration, which are major events that are highly linked to vascular diseases such as atherosclerosis and restenosis. p90 ribosomal S6 kinase (p90RSK), a potential downstream effector of ERK1/2, has been demonstrated to be activated by Ang II in VSMCs. However, the role of p90RSK on Ang II-induced VSMC proliferation and migration and its underlying signaling pathways remain unknown. In this study, we found that the inhibition of p90RSK, using a p90RSK specific inhibitor FMK or transfected cells with a plasmid encoding dominant negative RSK1, inactivated p90RSK kinase action completely and suppressed Ang II-induced rat aortic smooth muscle cell (RASMC) proliferation and migration. Interestingly, inhibition of p90RSK kinase activity abolished the phosphorylation of Akt as well as the protein expression of ICAM-1, VCAM-1, MMP-2, and NF-κB p65 in Ang II-treated RASMCs. Furthermore, the luciferase reporter assay revealed the inhibitory effect of FMK on NF-κB promoter activity induced by Ang II. Notably, using the partial carotid ligation model in mice, FMK was found to attenuate the medial thickness of carotid arteries increased by Ang II. Taken together, these results suggest that p90RSK plays a critical role in Ang II-induced VSMC proliferation and migration by increasing Akt phosphorylation and NF-κB p65 promoter activity associated with up-regulation of adhesion molecules and MMP-2 expression.


Assuntos
Angiotensina II/farmacologia , Aorta/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Animais , Aorta/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
6.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932915

RESUMO

Ginsenosides have been reported to have various biological effects, such as immune regulation and anticancer activity. In this study, we investigated the anti-inflammatory role of a combination of Rg2 and Rh1, which are minor ginsenosides, in lipopolysaccharide (LPS)-stimulated inflammation. In vitro experiments were performed using the RAW264.7 cell line, and an in vivo model of inflammation was established using LPS-treated ICR mice. We employed Griess assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunofluorescence staining, and hematoxylin and eosin staining to evaluate the effect of Rg2 and Rh1. We found that Rg2 and Rh1 significantly decreased LPS-induced major inflammatory mediator production, inducible-nitric oxide synthase expression, and nitric oxide production in macrophages. Moreover, Rg2 and Rh1 combination treatment inhibited the binding of LPS to toll-like receptor 4 (TLR4) on peritoneal macrophages. Therefore, the combination of ginsenoside Rg2 and Rh1 suppressed inflammation by abolishing the binding of LPS to TLR4, thereby inhibiting the TLR4-mediated signaling pathway. The combined ginsenoside synergistically blocked LPS-mediated PKCδ translocation to the plasma membrane, resulting in p38-STAT1 activation and NF-κB translocation. In addition, mRNA levels of pro-inflammatory cytokines, including TNF-α, IL-1ß, and IFN-ß, were significantly decreased by combined ginsenoside treatment. Notably, the 20 mg/kg ginsenoside treatment significantly reduced LPS-induced acute tissue inflammation levels in vivo, as indicated by the tissue histological damage scores and the levels of biochemical markers for liver and kidney function from mouse serum. These results suggest that the minor ginsenosides Rg2 and Rh1 may play a key role in prevention of LPS-induced acute inflammation and tissue damage.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ginsenosídeos/farmacologia , Fator de Transcrição STAT1/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Células RAW 264.7
7.
BMC Complement Altern Med ; 19(1): 55, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841887

RESUMO

BACKGROUND: Mulberry is a Korean medicinal herb that shows effective prevention and treatment of obesity and diabetes. Bioconversion is the process of producing active ingredients from natural products using microorganisms or enzymes. METHODS: In this study, we prepared bioconverted mulberry leaf extract (BMLE) with Viscozyme L, which we tested in insulin-sensitive cells (i.e., skeletal muscle cells and adipocytes) and insulin-secreting pancreatic ß-cells, as well as obese diabetic mice induced by co-administration of streptozotocin (100 mg/kg, IP) and nicotinamide (240 mg/kg, IP) and feeding high-fat diet, as compared to unaltered mulberry leaf extract (MLE). RESULTS: BMLE increased the glucose uptake in C2C12 myotubes and 3 T3-L1 adipocytes and increased glucose-stimulated insulin secretion in HIT-T15 pancreatic ß-cells. The fasting blood glucose levels in diabetic mice treated with BMLE or MLE (300 and 600 mg/kg, PO, 7 weeks) were significantly lower than those of the vehicle-treated group. At the same concentration, BMLE-treated mice showed better glucose tolerance than MLE-treated mice. Moreover, the blood concentration of glycated hemoglobin (HbA1C) in mice treated with BMLE was lower than that in the MLE group at the same concentration. Plasma insulin levels in mice treated with BMLE or MLE tended to increase compared to the vehicle-treated group. Treatment with BMLE yielded significant improvements in insulin resistance and insulin sensitivity. CONCLUSION: These results indicate that in the management of diabetic condition, BMLE is superior to unaltered MLE due to at least, in part, high concentrations of maker compounds (trans-caffeic acid and syringaldehyde) in BMLE.


Assuntos
Glicemia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Morus/química , Extratos Vegetais/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Hipoglicemiantes/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/metabolismo , Folhas de Planta/química
8.
Korean J Physiol Pharmacol ; 22(3): 349-360, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29719457

RESUMO

Autophagy has been studied as a therapeutic strategy for cardiovascular diseases. However, insufficient studies have been reported concerning the influence of vascular smooth muscle cells (VSMCs) through autophagy regulation. The aim of the present study was to determine the effects of VSMCs on the regulation of autophagy under in vitro conditions similar to vascular status of the equipped microtubule target agent-eluting stent and increased release of platelet-derived growth factor-BB (PDGF-BB). Cell viability and proliferation were measured using MTT and cell counting assays. Immunofluorescence using an anti-α-tubulin antibody was performed to determine microtubule dynamic formation. Cell apoptosis was measured by cleavage of caspase-3 using western blot analysis, and by nuclear fragmentation using a fluorescence assay. Autophagy activity was assessed by microtubule-associated protein light chain 3-II (LC-II) using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured using H2DCFDA. The proliferation and viability of VSMCs were inhibited by microtubule regulation. Additionally, microtubule-regulated and PDGF-BB-stimulated VSMCs increased the cleavage of caspase-3 more than only the microtubule-regulated condition, similar to that of LC3-II, implying autophagy. Inhibitory autophagy of microtubule-regulated and PDGF-BB-stimulated VSMCs resulted in low viability. However, enhancement of autophagy maintained survival through the reduction of ROS. These results suggest that the apoptosis of conditioned VSMCs is decreased by the blocking generation of ROS via the promotion of autophagy, and proliferation is also inhibited. Thus, promoting autophagy as a therapeutic target for vascular restenosis and atherosclerosis may be a good strategy.

9.
Korean J Physiol Pharmacol ; 22(1): 35-42, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29302210

RESUMO

Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

10.
J Nat Prod ; 80(7): 2018-2025, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28621938

RESUMO

The cucurbitaceous plant Momordica charantia L., named "bitter melon", inhabits Asia, Africa, and South America and has been used as a traditional medicine. The atypical proliferation of vascular smooth muscle cells (VSMCs) plays an important role in triggering the pathogenesis of cardiovascular diseases. Platelet-derived growth factor (PDGF) is regarded as the most powerful growth factor in promoting the intimal accumulation of VSMCs. The current study features the identification of six new cucurbitane-type triterpenoids (1-6) from the fruits of M.  charantia, utilizing diverse chromatographic and spectroscopic techniques. In particular, the 2D structure of 1 was confirmed utilizing the long-range HSQMBC NMR pulse, capable of measuring heteronuclear long-range correlations (4-6JCH). The cucurbitanes were also assessed for their inhibitory activity against PDGF-induced VSMC proliferation. This current study may constitute a basis for developing those chemotypes into sensible pharmacophores alleviating cardiovascular disorders.


Assuntos
Glicosídeos/farmacologia , Momordica charantia/química , Músculo Liso Vascular , Fator de Crescimento Derivado de Plaquetas/farmacologia , Triterpenos/farmacologia , Animais , Frutas/química , Glicosídeos/química , Humanos , Estrutura Molecular , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ratos , Ratos Sprague-Dawley , República da Coreia , Triterpenos/química
11.
J Nat Prod ; 79(10): 2559-2569, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27704813

RESUMO

The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are associated with cardiovascular diseases and related complications. Such deleterious proliferation and migration events are triggered by cytokines and growth factors, and among them, platelet-derived growth factor (PDGF) is recognized as the most potent inducer. Despite the genus Rubia being researched to identify valuable commercial and medicinal virtues, Rubia philippinensis has rarely been investigated. Nine arborinane-type triterpenoids (1-9) were identified from this underutilized plant species. In particular, 4 was identified as the first arborinane derivative carrying a ketocarbonyl motif at C-19. The presence of the cyclopentanone moiety and the associated configurational assignment were determined by utilizing NOE and coupling constant analysis. These compounds were assessed for their inhibitory potential on PDGF-induced proliferation and the migration of VSMCs. Treatment with 5 µM compound 5 (62.6 ± 10.7%) and compound 9 (41.1 ± 4.7%) impeded PDGF-stimulated proliferation without exerting cytotoxicity. Compound 7 exhibited antimigration activity in a dose-dependent manner (38.5 ± 3.0% at 10 µM, 57.6 ± 3.2% at 30 µM). These results suggest that the arborinane-type triterpenoids may be a pertinent starting point for the development of cardiovascular drugs capable of preventing the intimal accumulation of VSMCs.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Plantas Medicinais/química , Fator de Crescimento Derivado de Plaquetas/farmacologia , Rubia/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Animais , Aorta/citologia , Sobrevivência Celular/efeitos dos fármacos , Masculino , Estrutura Molecular , Músculo Liso Vascular/metabolismo , Ressonância Magnética Nuclear Biomolecular , Raízes de Plantas/química , Ratos , Triterpenos/química , Vietnã
12.
J Nat Prod ; 78(4): 803-10, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25835537

RESUMO

Veratrum nigrum is recognized as a medicinal plant used for the treatment of hypertension, stroke, and excessive phlegm. Chemical investigation of the roots and rhizomes led to the isolation of five new steroidal alkaloids, jervine-3-yl formate (1), veramarine-3-yl formate (2), jerv-5,11-diene-3ß,13ß-diol (3), (1ß,3ß,5ß)-1,3-dihydroxyjervanin-12(13)-en-11-one (4), and veratramine-3-yl acetate (5). Compounds 1 and 5 exhibited potent inhibitory activity (11.3 and 4.7 µM, respectively) against protein tyrosine phosphatase 1B (PTP1B), which has emerged as a viable target for treatment of type 2 diabetes mellitus. On the basis of their PTP1B inhibitory activity, the compounds were evaluated for their potential to enhance glucose uptake in C2C12 skeletal muscle cells. The insulin-stimulated glucose uptake was enhanced upon treatment with compounds 1 and 5 (10 µM) by 49.9 ± 6.5% and 56.0 ± 9.7%, respectively, in a more potent manner than that with the positive control rosiglitazone (47.3 ± 3.4% at 30 µM). These results suggest that steroidal alkaloids serve as practical antidiabetes mellitus leads capable of enhancing glucose uptake.


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Glucose/metabolismo , Plantas Medicinais/química , Esteroides/isolamento & purificação , Esteroides/farmacologia , Veratrum/química , Alcaloides/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estrutura Molecular , Músculo Esquelético/metabolismo , Raízes de Plantas/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , República da Coreia , Rizoma/química , Rosiglitazona , Estereoisomerismo , Esteroides/química , Tiazolidinedionas/farmacologia
13.
J Nat Prod ; 78(5): 1005-14, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25894669

RESUMO

Glucose uptake into insulin-sensitive tissues is important for the regulation of blood glucose. This study has investigated whether the pentacyclic triterpenoids substituted with a carboxylic acid at the C-27 position isolated from Astilbe rivularis can enhance glucose uptake and subsequently to also examine their underlying molecular mechanisms. The structure of the new pentacyclic triterpenoid 1 was assigned by spectroscopic data interpretation. To evaluate the activity of compounds 1 and 2, glucose uptake and glucose transporter 4 (GLUT4) translocation were measured in C2C12 myotubes. The C-27-carboxylated triterpenoids 1 and 2 significantly increased basal and insulin-stimulated glucose uptake and GLUT4 translocation to plasma membrane. Both compounds stimulated the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt), and extracellular signal-regulated kinase 1/2 (Erk1/2). Pretreatment with the Akt inhibitor triciribine or the Erk1/2 inhibitor U0126 decreased the ability of both compounds to enhance basal- and insulin-stimulated glucose uptake and stimulate GLUT4 translocation. These results indicate that compounds 1 and 2 activated both the IRS-1/Akt and Erk1/2 pathways and subsequently stimulated GLUT4 translocation, leading to enhanced glucose uptake. Thus, these observations suggest that C-27-carboxylated-pentacyclic triterpenoids may serve as scaffolds for development as agents for the management of blood glucose levels in disease states such as diabetes.


Assuntos
Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Triterpenos Pentacíclicos/isolamento & purificação , Triterpenos Pentacíclicos/farmacologia , Saxifragaceae/química , Transporte Biológico , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Triterpenos Pentacíclicos/química , Fosforilação , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vietnã
14.
Korean J Physiol Pharmacol ; 19(2): 141-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729276

RESUMO

"G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic ß-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with 30 µM linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus.

15.
Korean J Physiol Pharmacol ; 19(5): 421-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26330754

RESUMO

The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [(3)H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis.

16.
Korean J Physiol Pharmacol ; 17(3): 203-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23776396

RESUMO

As the abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis and vascular restenosis, a candidate drug with antiproliferative properties is needed. We investigated the antiproliferative action and underlying mechanism of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ), using VSMCs treated with platelet-derived growth factor (PDGF). 2-Nonylamino-DMNQ inhibited proliferation and cell number of VSMCs induced by PDGF, but not epidermal growth factor (EGF), in a concentration-dependent manner without any cytotoxicity. This derivative suppressed PDGF-induced [(3)H]-thymidine incorporation, cell cycle progression from G0/G1 to S phase, and the phosphorylation of phosphor-retinoblastoma protein (pRb) as well as the expression of cyclin E/D, cyclin-dependent kinase (CDK) 2/4, and proliferating cell nuclear antigen (PCNA). Importantly, 2-nonylamino-DMNQ inhibited the phosphorylation of PDGF receptorß(PDGF-Rß) enhanced by PDGF at Tyr(579), Tyr(716), Tyr(751), and Tyr(1021) residues. Subsequently, 2-nonylamino-DMNQ inhibited PDGF-induced phosphorylation of STAT3, ERK1/2, Akt, and PLCγ1. Therefore, our results indicate that 2-nonylamino-DMNQ inhibits PDGF-induced VSMC proliferation by blocking PDGF-Rß autophosphorylation, and subsequently PDGF-Rß-mediated downstream signaling pathways.

17.
Obesity (Silver Spring) ; 31(7): 1871-1883, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309717

RESUMO

OBJECTIVE: This study aimed to investigate the possible mechanisms by which orphan G protein-coupled receptor GPR41 activation enhances glucose uptake into C2C12 myotubes using a GPR41-selective agonist, AR420626, and to examine the ability of this agent to improve insulin sensitivity and glucose homeostasis in vivo. METHODS: Basal and insulin-stimulated glucose uptake and glucose transporter 4 translocations were measured in C2C12 myotubes. Ca2+ influx into cells was measured and GPR41-mediated signaling by AR420626 was examined. An oral glucose tolerance test was performed, and plasma insulin levels were measured in streptozotocin-treated or high-fat diet-fed diabetic mice. The glycogen content was measured in skeletal muscle tissue. RESULTS: AR420626 increased basal and insulin-stimulated glucose uptake, which was reduced by pertussis toxin, an inhibitor of Gαi -mediated signaling, and treatment with small interfering RNA for GPR41 (siGPR41). AR420626 increased intracellular Ca2+ influx and phosphorylated Ca2+ /calmodulin-dependent protein kinase type II, cyclic AMP-responsive element-binding protein, and mitogen-activated protein kinase (p38) in C2C12 myotubes, which were inhibited by treating with pertussis toxin, amlodipine (Ca2+ channel blocker), and siGPR41. AR420626 increased plasma insulin levels and skeletal muscle glycogen content and improved glucose tolerance in streptozotocin- and high-fat diet-induced diabetic mouse models. CONCLUSIONS: GPR41 activation with AR420626 increased glucose uptake mediated by Ca2+ signaling via GPR41, improving diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Glucose , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Glicogênio , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Toxina Pertussis , Estreptozocina
18.
Acta Pharm Sin B ; 13(3): 1093-1109, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970199

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a pivotal enzyme in the Toll-like receptor (TLR)/MYD88 dependent signaling pathway, which is highly activated in rheumatoid arthritis tissues and activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Inflammatory responses followed by IRAK4 activation promote B-cell proliferation and aggressiveness of lymphoma. Moreover, proviral integration site for Moloney murine leukemia virus 1 (PIM1) functions as an anti-apoptotic kinase in propagation of ABC-DLBCL with ibrutinib resistance. We developed a dual IRAK4/PIM1 inhibitor KIC-0101 that potently suppresses the NF-κB pathway and proinflammatory cytokine induction in vitro and in vivo. In rheumatoid arthritis mouse models, treatment with KIC-0101 significantly ameliorated cartilage damage and inflammation. KIC-0101 inhibited the nuclear translocation of NF-κB and activation of JAK/STAT pathway in ABC-DLBCLs. In addition, KIC-0101 exhibited an anti-tumor effect on ibrutinib-resistant cells by synergistic dual suppression of TLR/MYD88-mediated NF-κB pathway and PIM1 kinase. Our results suggest that KIC-0101 is a promising drug candidate for autoimmune diseases and ibrutinib-resistant B-cell lymphomas.

19.
Autophagy ; 18(3): 518-539, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34101546

RESUMO

The overexpansion of adipose tissues leads to obesity and eventually results in metabolic disorders. Garcinia cambogia (G. cambogia) has been used as an antiobesity supplement. However, the molecular mechanisms underlying the effects of G. cambogia on cellular processes have yet to be fully understood. Here, we discovered that G. cambogia attenuated the expression of CEBPB (CCAAT/enhancer binding protein (C/EBP), beta), an important adipogenic factor, suppressing its transcription in differentiated cells. In addition, G. cambogia inhibited macroautophagic/autophagic flux by decreasing autophagy-related gene expression and autophagosome formation. Notably, G. cambogia markedly elevated the expression of KLF3 (Kruppel-like factor 3 (basic)), a negative regulator of adipogenesis, by reducing SQSTM1/p62-mediated selective autophagic degradation. Furthermore, increased KLF3 induced by G. cambogia interacted with CTBP2 (C-terminal binding protein 2) to form a transcriptional repressor complex and inhibited Cebpa and Pparg transcription. Importantly, we found that RPS6KA1 and STAT3 were involved in the G. cambogia-mediated regulation of CEBPB and autophagic flux. In an obese animal model, G. cambogia reduced high-fat diet (HFD)-induced obesity by suppressing epididymal and inguinal subcutaneous white adipose tissue mass and adipocyte size, which were attributed to the regulation of targets that had been consistently identified in vitro. These findings provide new insight into the mechanism of G. cambogia-mediated regulation of adipogenesis and suggest molecular links to therapeutic targets for the treatment of obesity.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; ATG: autophagy-related; Baf: bafilomycin A1; BECN1: beclin 1; CEBP: CCAAT/enhancer binding protein (C/EBP); CHX: cycloheximide; CREB: cAMP response element binding protein; CTBP: C-terminal binding protein; EGCG: (-)-epigallocatechin gallate; eWAT: epididymal white; G. cambogia: Garcinia cambogia; GFP: green fluorescent protein; H&E: hematoxylin and eosin; HFD: high-fat diet; iWAT: inguinal subcutaneous white; KLF: Kruppel-like factor; LAP: liver-enriched transcriptional activating proteins; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; ND: normal diet; PPARG: peroxisome proliferator activated receptor gamma; qPCR: quantitative real-time PCR; RFP: red fluorescent protein; RPS6KA1: ribosomal protein S6 kinase A1; siRNA: small-interfering RNA; SQSTM1/p62: sequestosome 1; STAT: signal transducer and activator of transcription; TEM: transmission electron microscopy.


Assuntos
Adipogenia , Garcinia cambogia , Adipogenia/genética , Animais , Autofagia/fisiologia , Garcinia cambogia/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Obesidade , PPAR gama/metabolismo , Proteínas Serina-Treonina Quinases , Proteína Sequestossoma-1/metabolismo
20.
Mol Nutr Food Res ; 66(10): e2100669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35213784

RESUMO

SCOPE: Garcinia cambogia (G. cambogia) is known to have antiobesity effects. In this study, the therapeutic effects of G. cambogia on glucose homeostasis in obesity-induced diabetes are explored and the underlying mechanisms are investigated. METHODS AND RESULTS: C2C12 myotubes are treated with G. cambogia; glucose uptake, intracellular Ca2+ levels, and related alterations in signaling pathways are examined. High-fat diet (HFD)-fed mice are administered G. cambogia for 8 weeks; oral glucose tolerance is evaluated, and the regulation of identified targets of signaling pathways in quadriceps skeletal muscle are examined in vivo. G. cambogia increases glucose uptake in C2C12 myotubes and induces the upregulation of AMPK, ACC, and p38 MAPK phosphorylation. Notably, G. cambogia markedly elevates both intracellular Ca2+ levels, activating CaMKII, a Ca2+ -sensing protein, and TBC1D4-mediated GLUT4 translocation, to facilitate glucose uptake. Furthermore, high-glucose-induced inhibition of glucose uptake and signal transduction is reverted by G. cambogia. In an HFD-induced diabetes mouse model, G. cambogia administration results in significant blood glucose-lowering effects, which are attributed to the regulation of targets that have been identified in vitro, in quadricep skeletal muscle. CONCLUSION: These findings provide new insights into the mechanism by which G. cambogia regulates glucose homeostasis in obesity-induced diabetes.


Assuntos
Diabetes Mellitus , Glucose , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cálcio/metabolismo , Cálcio da Dieta/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica/efeitos adversos , Garcinia cambogia/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA