Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Appl Environ Microbiol ; 90(3): e0175023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349147

RESUMO

Phyllosphere microbial communities are increasingly experiencing intense pulse disturbance events such as drought. It is currently unknown how phyllosphere communities respond to such disturbances and if they are able to recover. We explored the stability of phyllosphere communities over time, in response to drought stress, and under recovery from drought on temperate forage grasses. Compositional or functional changes were observed during the disturbance period and whether communities returned to non-stressed levels following recovery. Here, we found that phyllosphere community composition shifts as a result of simulated drought but does not fully recover after irrigation is resumed and that the degree of community response to drought is host species dependent. However, while community composition had changed, we found a high level of functional stability (resistance) over time and in the water deficit treatment. Ecological modeling enabled us to understand community assembly processes over a growing season and to determine if they were disrupted during a disturbance event. Phyllosphere community succession was characterized by a strong level of ecological drift, but drought disturbance resulted in variable selection, or, in other words, communities were diverging due to differences in selective pressures. This successional divergence of communities with drought was unique for each host species. Understanding phyllosphere responses to environmental stresses is important as climate change-induced stresses are expected to reduce crop productivity and phyllosphere functioning. IMPORTANCE: Leaf surface microbiomes have the potential to influence agricultural and ecosystem productivity. We assessed their stability by determining composition, functional resistance, and resilience. Resistance is the degree to which communities remain unchanged as a result of disturbance, and resilience is the ability of a community to recover to pre-disturbance conditions. By understanding the mechanisms of community assembly and how they relate to the resistance and resilience of microbial communities under common environmental stresses such as drought, we can better understand how communities will adapt to a changing environment and how we can promote healthy agricultural microbiomes. In this study, phyllosphere compositional stability was highly related to plant host species phylogeny and, to a lesser extent, known stress tolerances. Phyllosphere community assembly and stability are a result of complex interactions of ecological processes that are differentially imposed by host species.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Plantas , Folhas de Planta/microbiologia , Especificidade de Hospedeiro
2.
Glob Chang Biol ; 30(1): e17077, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273583

RESUMO

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin. By combining sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy with soil phosphatase activity assays, we assessed pools and process rates of P cycling in surface soils (0-10 cm depth). Deforestation caused increases in total P (135-398 mg kg-1 ), total organic P (Po ) (19-168 mg kg-1 ), and total inorganic P (Pi ) (30-113 mg kg-1 ) fractions in surface soils with pasture age, with concomitant increases in Pi fractions corroborated by sequential fractionation and XANES spectroscopy. Soil non-labile Po (10-148 mg kg-1 ) increased disproportionately compared to labile Po (from 4-5 to 7-13 mg kg-1 ). Soil phosphomonoesterase and phosphodiesterase binding affinity (Km ) decreased while the specificity constant (Ka ) increased by 83%-159% in 39-100y pastures. Soil P pools and process rates reverted to magnitudes similar to primary forests within 13 years of pasture abandonment. However, the relatively short but representative pre-abandonment pasture duration of our secondary forest may not have entailed significant deforestation effects on soil P cycling, highlighting the need to consider both pasture duration and reforestation age in evaluations of Amazon land use legacies. Although the space-for-time substitution design can entail variation in the initial soil P pools due to atmospheric P deposition, soil properties, and/or primary forest growth, the trend of P pools and process rates with pasture age still provides valuable insights.


Assuntos
Floresta Úmida , Solo , Solo/química , Fósforo , Ecossistema , Conservação dos Recursos Naturais , Florestas
3.
Environ Res ; 212(Pt A): 113139, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35337832

RESUMO

Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH4) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH4 cycle. To better predict the responses of soil CH4-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils. Gas samples were collected periodically for gas chromatography analysis, and methanogenic archaeal and methanotrophic bacterial communities were assessed using quantitative PCR and metagenomics. Positive and negative daily CH4 fluxes were observed for forest and pasture, indicating that these soils can act as both CH4 sources and sinks. Cumulative emissions and the abundance of methanogenesis-related genes and taxonomic groups were affected by land use, moisture, and their interaction. Pasture soils at 100% FC had the highest abundance of methanogens and CH4 emissions, 22 times higher than forest soils under the same treatment. Higher ratios of methanogens to methanotrophs were found in pasture than in forest soils, even at field capacity conditions. Land use and moisture were significant factors influencing the composition of methanogenic and methanotrophic communities. The diversity and evenness of methanogens did not change throughout the experiment. In contrast, methanotrophs exhibited the highest diversity and evenness in pasture soils at 100% FC. Taken together, our results suggest that increased moisture exacerbates soil CH4 emissions and microbial responses driven by land-use change in the Amazon. This is the first report on the microbial CH4 cycle in Amazonian upland soils that combined one-month gas measurements with advanced molecular methods.


Assuntos
Metano , Solo , Clima , Florestas , Metano/análise , Solo/química , Microbiologia do Solo
4.
Appl Environ Microbiol ; 87(17): e0089521, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34161142

RESUMO

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high-resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future. IMPORTANCE Globally important grassland ecosystems are at risk of degradation due to poor management practices compounded by predicted increases in severity and duration of drought over the next century. Finding new ways to support grassland productivity is critical to maintaining their ecological and agricultural benefits. Discerning how grassland microbial communities change in response to climate stress will help us understand how plant-microbe relationships may be useful to sustainably support grasslands in the future. In this study, phyllosphere community diversity and composition were significantly altered under drought conditions. The significance of our research is demonstrating how severe climate stress reduces bacterial community diversity, which previously was directly associated with decreased plant productivity. These findings guide future questions about functional plant-microbe interactions under stress conditions, greatly enhancing our understanding of how bacteria can increase food security by promoting grassland growth and resilience.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Poaceae/microbiologia , Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Secas , Ecossistema , Pradaria , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Solo/química , Microbiologia do Solo , Água/análise
5.
Mol Ecol ; 30(19): 4899-4912, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297871

RESUMO

Southern Amazonia is currently experiencing extensive land use change from forests to agriculture caused by increased local and global demand for agricultural products. However, little is known about the impacts of deforestation and land use change on soil biota. We investigated two regions in southern Amazonia (rainforest and Savannah/Cerrado biomes), analysing soil biota community turnover based on 16S (Archaea and Bacteria) and 18S rRNA genes (Eukaryotes, including Fungi, Protists and Animalia) and correlating them with soil chemistry and land use intensity. We found that soil biota community structure is driven by land use change in both Cerrado and rainforest. Crop fields approximatively doubled the richness of soil Archaea, Bacteria and Protists. We propose that crop systems not only increase soil pH and fertility, but also create continued disturbance (crop seasons) that stimulates soil diversity, as predicted by the dynamic equilibrium model (DEM) and the intermediate disturbance hypothesis (IDH). Even though agricultural fields had higher soil biota richness, some taxa were suppressed by agriculture (6/31 operational taxonomic units of Archaea, 245/1790 of Bacteria, 12/74 of Animalia, 20/144 of Fungi and 25/310 of Protists). Consequently, land use change in this region should proceed with caution. In the southern Amazonia region of Brazil, current laws require farmers to keep 20%-80% pristine vegetation areas on their property. Our data support the relevance of this law: since there are unique soil taxa under native vegetation, keeping these pristine areas adjacent to the agricultural fields should maximize soil biodiversity protection in these regions.


Assuntos
Microbiologia do Solo , Solo , Agricultura , Biodiversidade , Biota , Brasil , Floresta Úmida
6.
Mol Ecol ; 30(11): 2560-2572, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33817881

RESUMO

The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH4 source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH4 emissions across floodplain areas. Here, we report the in situ composition of CH4 cycling microbial communities in Amazonian floodplain sediments. We considered how abiotic factors may affect the microbial community composition and, more specifically, CH4 cycling groups. We collected sediment samples during wet and dry seasons from three different types of floodplain forests, along with upland forest soil samples, from the Eastern Amazon, Brazil. We used high-resolution sequencing of archaeal and bacterial 16S rRNA genes combined with real-time PCR to quantify Archaea and Bacteria, as well as key functional genes indicative of the presence of methanogenic (mcrA) and methanotrophic (pmoA) microorganisms. Methanogens were found to be present in high abundance in floodplain sediments, and they seem to resist the dramatic environmental changes between flooded and nonflooded conditions. Methanotrophs known to use different pathways to oxidise CH4 were detected, including anaerobic archaeal and bacterial taxa, indicating that a wide metabolic diversity may be harboured in this highly variable environment. The floodplain environmental variability, which is affected by the river origin, drives not only the sediment chemistry but also the composition of the microbial communities. These environmental changes seem also to affect the pools of methanotrophs occupying distinct niches. Understanding these shifts in the methanotrophic communities could improve our comprehension of the CH4 emissions in the region.


Assuntos
Euryarchaeota , Metano , Archaea/genética , Brasil , RNA Ribossômico 16S/genética , Microbiologia do Solo
7.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169937

RESUMO

Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (ß-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs' ß-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests.


Assuntos
Bactérias/metabolismo , Conservação dos Recursos Naturais , Floresta Úmida , Microbiologia do Solo , Bactérias/classificação , Brasil , Microbiota , Fixação de Nitrogênio , Solo/química
8.
Mol Ecol ; 26(6): 1547-1556, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28100018

RESUMO

Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils.


Assuntos
Agricultura , Metano/metabolismo , Floresta Úmida , Microbiologia do Solo , Animais , Bactérias , Bovinos , Solo
10.
Proc Natl Acad Sci U S A ; 110(3): 988-93, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23271810

RESUMO

The Amazon rainforest is the Earth's largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests.


Assuntos
Agricultura , Bactérias/isolamento & purificação , Biodiversidade , Microbiologia do Solo , Clima Tropical , Animais , Bactérias/classificação , Bactérias/genética , Brasil , Bovinos , Ecossistema , Humanos , Filogenia , Chuva , Árvores
11.
Appl Environ Microbiol ; 80(1): 281-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24162570

RESUMO

The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Atividades Humanas , Fixação de Nitrogênio , Microbiologia do Solo , Agricultura/métodos , Bactérias/metabolismo , Carbono/análise , Análise por Conglomerados , Conservação dos Recursos Naturais , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitrogênio/análise , Oxirredutases/genética , Filogenia , Análise de Sequência de DNA , Solo/química , América do Sul , Árvores
12.
Mol Ecol ; 23(12): 2988-99, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24806276

RESUMO

Land use change in the Amazon rainforest alters the taxonomic structure of soil microbial communities, but whether it alters their functional gene composition is unknown. We used the highly parallel microarray technology GeoChip 4.0, which contains 83,992 probes specific for genes linked nutrient cycling and other processes, to evaluate how the diversity, abundance and similarity of the targeted genes responded to forest-to-pasture conversion. We also evaluated whether these parameters were reestablished with secondary forest growth. A spatially nested scheme was employed to sample a primary forest, two pastures (6 and 38 years old) and a secondary forest. Both pastures had significantly lower microbial functional genes richness and diversity when compared to the primary forest. Gene composition and turnover were also significantly modified with land use change. Edaphic traits associated with soil acidity, iron availability, soil texture and organic matter concentration were correlated with these gene changes. Although primary and secondary forests showed similar functional gene richness and diversity, there were differences in gene composition and turnover, suggesting that community recovery was not complete in the secondary forest. Gene association analysis revealed that response to ecosystem conversion varied significantly across functional gene groups, with genes linked to carbon and nitrogen cycling mostly altered. This study indicates that diversity and abundance of numerous environmentally important genes respond to forest-to-pasture conversion and hence have the potential to affect the related processes at an ecosystem scale.


Assuntos
Ecossistema , Microbiologia do Solo , Agricultura , Ciclo do Carbono , Genes Bacterianos , Genes Fúngicos , Variação Genética , Metagenoma , Família Multigênica , Ciclo do Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Árvores , Clima Tropical
13.
Appl Microbiol Biotechnol ; 98(3): 1329-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23715851

RESUMO

The lead scavenger 1,2-dibromoethane (EDB), a former additive to leaded gasoline, is a common groundwater contaminant, yet not much knowledge is available for its targeted bioremediation, especially under in situ conditions. The study site was an aviation gas spill site, which, although all hydrocarbons and most of the EDB were remediated in the mid-1990s, still exhibits low levels of EDB remaining in the groundwater (about 11 µg EDB/l). To evaluate the effect of phenol on biostimulation of low concentration of EDB, microcosms were established from an EDB-contaminated aquifer. After 300 days at environmentally relevant conditions (12 ± 2 °C, static incubation), EDB was not significantly removed from unamended microcosms compared to the abiotic control. However, in treatments amended with phenol, up to 80 % of the initial EDB concentration had been degraded, while added phenol was removed completely. Microbial community composition in unamended and phenol-amended microcosms remained unchanged, and Polaromonas sp. dominated both types of microcosms, but total bacterial abundance and numbers of the gene for phenol hydroxylase were higher in phenol-amended microcosms. Dehalogenase, an indicator suggesting targeted aerobic biodegradation of EDB, was not detected in either treatment. This finding suggests phenol hydroxylase, rather than a dehalogenation reaction, may be responsible for 1,2-dibromoethane oxidation under in situ conditions. In addition, biostimulation of EDB is possible through the addition of low levels of phenol in aerobic groundwater sites.


Assuntos
Dibrometo de Etileno/metabolismo , Água Subterrânea/química , Fenol/metabolismo , Poluentes da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biota , Redes e Vias Metabólicas/genética
14.
Microbiol Spectr ; 12(2): e0350823, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236038

RESUMO

Trace elements are associated with the microbial degradation of organic matter and methanogenesis, as enzymes in metabolic pathways often employ trace elements as essential cofactors. However, only a few studies investigated the effects of trace elements on the metabolic activity of microbial communities associated with biogenic coalbed methane production. We aimed to determine the effects of strategically selected trace elements on structure and function of active bacterial and methanogenic communities to stimulate methane production in subsurface coalbeds. Microcosms were established with produced water and coal from coalbed methane wells located in the Powder River Basin, Wyoming, USA. In initial pilot experiments with eight different trace elements, individual amendments of Co, Cu, and Mo lead to significantly higher methane production. Transcript levels of mcrA, the key marker gene for methanogenesis, positively correlated with increased methane production. Phylogenetic analysis of the mcrA cDNA library demonstrated compositional shifts of the active methanogenic community and increase of their diversity, particularly of hydrogenotrophic methanogens. High-throughput sequencing of cDNA obtained from 16S rRNA demonstrated active and abundant bacterial groups in response to trace element amendments. Active Acetobacterium members increased in response to Co, Cu, and Mo additions. The findings of this study yield new insights into the importance of essential trace elements on the metabolic activity of microbial communities involved in subsurface coalbed methane and provide a better understanding of how microbial community composition is shaped by trace elements.IMPORTANCEMicrobial life in the deep subsurface of coal beds is limited by nutrient replenishment. While coal bed microbial communities are surrounded by carbon sources, we hypothesized that other nutrients such as trace elements needed as cofactors for enzymes are missing. Amendment of selected trace elements resulted in compositional shifts of the active methanogenic and bacterial communities and correlated with higher transcript levels of mcrA. The findings of this study yield new insights to not only identify possible limitations of microbes by replenishment of trace elements within their specific hydrological placement but also into the importance of essential trace elements for the metabolic activity of microbial communities involved in subsurface coalbed methane production and provides a better understanding of how microbial community composition is shaped by trace elements. Furthermore, this finding might help to revive already spent coal bed methane well systems with the ultimate goal to stimulate methane production.


Assuntos
Carvão Mineral , Oligoelementos , Carvão Mineral/microbiologia , Oligoelementos/metabolismo , Metano , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética
15.
Environ Microbiome ; 19(1): 48, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020395

RESUMO

Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.

16.
Appl Environ Microbiol ; 79(18): 5693-700, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851090

RESUMO

The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to ß-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing ß-lactam inhibitors and increased resistance to ß-lactam antibiotics may indicate that asnO is involved in the production of a ß-lactam inhibitor.


Assuntos
Dessecação , Loci Gênicos , Viabilidade Microbiana , Pressão Osmótica , Sinorhizobium meliloti/fisiologia , Cloreto de Sódio/toxicidade , Estresse Fisiológico , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Mutagênese Insercional , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo
17.
Biotechnol Bioeng ; 109(3): 637-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22015922

RESUMO

A novel sulfur-utilizing perchlorate reducing bacterial consortium successfully treated perchlorate (ClO4⁻) in prior batch and bench-scale packed bed reactor (PBR) studies. This study examined the scale up of this process for treatment of water from a ClO 4⁻ and RDX contaminated aquifer in Cape Cod Massachusetts. A pilot-scale upflow PBR (∼250-L) was constructed with elemental sulfur and crushed oyster shell packing media. The reactor was inoculated with sulfur oxidizing ClO4⁻ reducing cultures enriched from a wastewater seed. Sodium sulfite provided a good method of dissolved oxygen removal in batch cultures, but was found to promote the growth of bacteria that carry out sulfur disproportionation and sulfate reduction, which inhibited ClO4⁻ reduction in the pilot system. After terminating sulfite addition, the PBR successfully removed 96% of the influent ClO4⁻ in the groundwater at an empty bed contact time (EBCT) of 12 h (effluent ClO4⁻ of 4.2 µg L(-1)). Simultaneous ClO4⁻ and NO3⁻ reduction was observed in the lower half of the reactor before reactions shifted to sulfur disproportionation and sulfate reduction. Analyses of water quality profiles were supported by molecular analysis, which showed distinct groupings of ClO4⁻ and NO3⁻ degrading organisms at the inlet of the PBR, while sulfur disproportionation was the primary biological process occurring in the top potion of the reactor.


Assuntos
Reatores Biológicos/microbiologia , Consórcios Microbianos , Percloratos/metabolismo , Enxofre/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Massachusetts , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfitos/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
18.
Langmuir ; 28(33): 12134-9, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22877364

RESUMO

This paper demonstrates the effectiveness of a new antimicrobial suture coating. An amphiphilic polymer, poly[(aminoethyl methacrylate)-co-(butyl methacrylate)] (PAMBM), inspired by antimicrobial peptides, was bactericidal against S. aureus in time-kill experiments. PAMBM was then evaluated in a variety of polymer blends using the Japanese Industrial Standard (JIS) method and showed excellent antimicrobial activity at a low concentration (0.5 wt %). Using a similar antimicrobial coating formula to commercial Vicryl Plus sutures, disk samples of the coating material containing PAMBM effectively killed bacteria (98% reduction at 0.75 wt %). Triclosan, the active ingredient in Vicryl Plus coatings, did not kill the bacteria. Further Kirby-Bauer assays of these disk samples showed an increasing zone of inhibition with increasing concentration of PAMBM. Finally, the PAMBM-containing coating was applied to sutures, and the morphology of the coating surface was characterized by SEM, along with Vicryl and uncoated sutures. The PAMBM-containing sutures killed bacteria more effectively (3 log(10) reduction at 2.4 wt %) than Vicryl Plus sutures (0.5 log(10) reduction).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Suturas/microbiologia , Cinética , Polímeros/química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Ácidos Esteáricos/química , Triclosan/química , Triclosan/farmacologia
19.
Langmuir ; 28(20): 7803-10, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22563906

RESUMO

Toward an understanding of nanoparticle-bacterial interactions and the development of sensors and other substrates for controlled bacterial adhesion, this article describes the influence of flow on the initial stages of bacterial capture (Staphylococcus aureus) on surfaces containing cationic nanoparticles. A PEG (poly(ethylene glycol)) brush on the surface around the nanoparticles sterically repels the bacteria. Variations in ionic strength tune the Debye length from 1 to 4 nm, increasing the strength and range of the nanoparticle attractions toward the bacteria. At relatively high ionic strengths (physiological conditions), bacterial capture requires several nanoparticle-bacterial contacts, termed "multivalent capture". At low ionic strength and gentle wall shear rates (on the order of 10 s(-1)), individual bacteria can be captured and held by single surface-immobilized nanoparticles. Increasing the flow rate to 50 s(-1) causes a shift from monovalent to divalent capture. A comparison of experimental capture efficiencies with statistically determined capture probabilities reveals the initial area of bacteria-surface interaction, here about 50 nm in diameter for a Debye length κ(-1) of 4 nm. Additionally, for κ(-1) = 4 nm, the net per nanoparticle binding energies are strong but highly shear-sensitive, as is the case for biological ligand-receptor interactions. Although these results have been obtained for a specific system, they represent a regime of behavior that could be achieved with different bacteria and different materials, presenting an opportunity for further tuning of selective interactions. These finding suggest the use of surface elements to manipulate individual bacteria and nonfouling designs with precise but finite bacterial interactions.


Assuntos
Engenharia , Nanopartículas/química , Staphylococcus aureus/química , Difusão , Hidrodinâmica , Concentração de Íons de Hidrogênio , Eletricidade Estática , Propriedades de Superfície
20.
Microbiol Resour Announc ; 11(8): e0043222, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35852316

RESUMO

Here, we report the metagenomes from two Amazonian floodplain sediments in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle. Microbial information on this diversified and dynamic landscape will provide further insights into its significance in regional and global biogeochemical cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA