Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Chem Rev ; 124(4): 1950-1991, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364021

RESUMO

Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.

2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115404

RESUMO

A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ([Formula: see text]), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity-derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials.

3.
Proc Natl Acad Sci U S A ; 119(30): e2202650119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858429

RESUMO

Controlled reduction of oxygen is important for developing clean energy technologies, such as fuel cells, and is vital to the existence of aerobic organisms. The process starts with oxygen in a triplet ground state and ends with products that are all in singlet states. Hence, spin constraints in the oxygen reduction must be considered. Here, we show that the electron transfer efficiency from chiral electrodes to oxygen (oxygen reduction reaction) is enhanced over that from achiral electrodes. We demonstrate lower overpotentials and higher current densities for chiral catalysts versus achiral ones. This finding holds even for electrodes composed of heavy metals with large spin-orbit coupling. The effect results from the spin selectivity conferred on the electron current by the chiral assemblies, the chiral-induced spin selectivity effect.


Assuntos
Elétrons , Oxigênio , Catálise , Eletrodos , Transporte de Elétrons , Oxirredução , Oxigênio/química
4.
Proc Natl Acad Sci U S A ; 119(35): e2204735119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994638

RESUMO

Considerable electric fields are present within living cells, and the role of bioelectricity has been well established at the organismal level. Yet much remains to be learned about electric-field effects on protein function. Here, we use phototriggered charge injection from a site-specifically attached ruthenium photosensitizer to directly demonstrate the effect of dynamic charge redistribution within a protein. We find that binding of an antibody to phosphoglycerate kinase (PGK) is increased twofold under illumination. Remarkably, illumination is found to suppress the enzymatic activity of PGK by a factor as large as three. These responses are sensitive to the photosensitizer position on the protein. Surprisingly, left (but not right) circularly polarized light elicits these responses, indicating that the electrons involved in the observed dynamics are spin polarized, due to spin filtration by protein chiral structures. Our results directly establish the contribution of electrical polarization as an allosteric signal within proteins. Future experiments with phototriggered charge injection will allow delineation of charge rearrangement pathways within proteins and will further depict their effects on protein function.


Assuntos
Campos Eletromagnéticos , Proteínas , Regulação Alostérica , Elétrons , Iluminação , Fármacos Fotossensibilizantes/farmacologia , Ligação Proteica , Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Proteínas/efeitos da radiação , Rutênio/farmacologia
5.
Chemphyschem ; 25(10): e202400033, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38411033

RESUMO

The reaction of D-glucose oxidase (GOx) with D- and L-glucose was investigated using confocal fluorescence microscopy and Hall voltage measurements, after the enzyme was adsorbed as a monolayer. By adsorbing the enzyme on a ferromagnetic substrate, we verified that the reaction is spin dependent. This conclusion was supported by monitoring the reaction when the enzyme is adsorbed on a Hall device that does not contain any magnetic elements. The spin dependence is consistent with the chiral-induced spin selectivity (CISS) effect; it can be explained by the improved fidelity of the electron transfer process through the chiral enzyme due to the coupling of the linear momentum of the electrons and their spin. Since the reaction studied often serve as a model system for enzymatic activity, the results may suggest the general importance of the spin-dependent electron transfer in bio-chemical processes.


Assuntos
Glucose Oxidase , Glucose , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glucose/química , Glucose/metabolismo , Transporte de Elétrons , Biocatálise , Adsorção
6.
Chemphyschem ; 25(10): e202400460, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38778583

RESUMO

The front cover artwork is provided by Prof. Ron Naaman's group at the Weizmann Institute of Science. The image shows that direct electron transfer through GOx is governed by electron spins, which result from the chiral-induced spin selectivity (CISS) effect. Read the full text of the Research Article at 10.1002/cphc.202400033.


Assuntos
Glucose Oxidase , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Transporte de Elétrons , Biocatálise , Elétrons
7.
J Am Chem Soc ; 145(49): 26791-26798, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37972388

RESUMO

Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.

8.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765468

RESUMO

Chirality ('handedness') is a property that underlies a broad variety of phenomena in nature. Chiral molecules appear in two forms, and each is a mirror image of the other, the two enantiomers. The chirality of molecules is associated with their optical activity, and circular dichroism is commonly applied to identify the handedness of chiral molecules. Recently, the chiral induced spin selectivity (CISS) effect was established, according to which transfer of electrons within chiral molecules depends on the electron's spin. Which spin is preferred depends on the handedness of the chiral molecule and the direction of motion of the electron. Several experiments in the past indicated that there may be a relation between the optical activity of the molecules and their spin selectivity. Here, we show that for a molecule containing several stereogenic axes, when adsorbed on a metal substrate, the peaks in the CD spectra have the same signs for the two enantiomers. This is not the case when the molecules are adsorbed on a nonmetallic substrate or dissolved in solution. Quantum chemical simulations are able to explain the change in the CD spectra upon adsorption of the molecules on conductive and nonconductive surfaces. Surprisingly, the CISS properties are similar for the two enantiomers when adsorbed on the metal substrate, while when the molecules are adsorbed on nonmetallic surface, the preferred spin depends on the molecule handedness. This correlation between the optical activity and the CISS effect indicates that the CISS effect relates to the global polarizability of the molecule.

9.
Chemistry ; 29(63): e202302254, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37635073

RESUMO

Self-assembling features, chiroptical activity, and spin filtering properties are reported for 2,15- and 4,13-disubstituted [6]helicenes decorated in their periphery with 3,4,5-tris(dodecyloxy)-N-(4-ethynylphenyl)benzamide moieties. The weak non-covalent interaction between these units conditions the corresponding circularly polarized luminescence and spin polarization. The self-assembly is overall weak for these [6]helicene derivatives that, despite the formation of H-bonding interactions between the amide groups present in the peripheral moieties, shows very similar chiroptical properties both in the monomeric or aggregated states. This effect could be explained by considering the steric effect that these groups could generate in the growing of the corresponding aggregate formed. Importantly, the self-assembling features also condition chiral induced spin selectivity (CISS effect), with experimental spin polarization (SP) values found between 35-40 % for both systems, as measured by magnetic-conducting atomic force microscopy (AFM) technique.

10.
Phys Chem Chem Phys ; 25(33): 22124-22129, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37563955

RESUMO

Metal-organic Co(II)-phenylalanine crystals were studied and were found to possess magnetic properties and long-range spin transport. Magnetic measurements confirmed that in the crystals there are antiferromagnetic interactions between Co(II) and the lattice. The metal-organic crystals (MOCs) also present the chirality-induced spin selectivity (CISS) effect at room temperature. A long-range spin polarization is observed using a magnetic conductive-probe atomic force microscope. The spin polarization is found to be in the range of 35-45%.

11.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38063226

RESUMO

We analyze from a theoretical perspective recent experiments where chiral discrimination in biological systems was established using Atomic Force Microscopy (AFM). Even though intermolecular forces involved in AFM measurements have different origins, i.e., electrostatic, bonding, exchange, and multipole interactions, the key molecular forces involved in enantiospecific biorecognition are electronic spin exchange and van der Waals (vdW) dispersion forces, which are sensitive to spin-orbit interaction (SOI) and space-inversion symmetry breaking in chiral molecules. The vdW contribution to chiral discrimination emerges from the inclusion of SOI and spin fluctuations due to the chiral-induced selectivity effect, a result we have recently demonstrated theoretically. Considering these two enantiospecific contributions, we show that the AFM results regarding chiral recognition can be understood in terms of a simple physical model that describes the different adhesion forces associated with different electron spin polarization generated in the (DD), (LL), and (DL) enantiomeric pairs, as arising from the spin part of the exchange and vdW contributions. The model can successfully produce physically reasonable parameters accounting for the vdW and exchange interaction strength, accounting for the chiral discrimination effect. This fact has profound implications in biorecognition where the relevant intermolecular interactions in the intermediate-distance regime are clearly connected to vdW forces.

12.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37811828

RESUMO

Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.


Assuntos
Elétrons , Periplasma , Transporte de Elétrons , Oxirredução , Periplasma/metabolismo , Metais , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
13.
Chirality ; 35(9): 562-568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36896481

RESUMO

The chiral-induced spin selectivity (CISS) effect relates to the spin-selective electron transport through chiral molecules; therefore, the chiral molecules act as spin filters. In past studies, correlation was found between the magnitude of the spin filtering and the intensity of the circular dichroism (CD) spectrum (the first Compton peak) of the molecules. Since the intensity of the CD peak relates to both the magnitude of the electric and magnetic dipole transitions, it was not clear which of these properties correlate with the CISS effect. This work aims at addressing this question. By studying the spin-dependent conduction and the CD spectra of the thiol-functionalized enantiopure binaphthalene (BINAP) and ternaphthalene (TERNAP), we found that both BINAP and TERNAP exhibit a similar spin polarization of 50%, despite the first Compton peak in TERNAP being almost twice as intense as the peak in BINAP. These results can be explained by the similar values of their anisotropy (or dissymmetry) factor, gabs , which is proportional to the magnetic transition dipole moment. Hence, we concluded that the CISS effect is proportional to the transition dipole moment in chiral molecules, namely, to the dissymmetry factor.

14.
J Am Chem Soc ; 144(17): 7709-7719, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404592

RESUMO

We report on the synthesis and self-assembly of 2,15- and 4,13-disubstituted carbo[6]helicenes 1 and 2 bearing 3,4,5-tridodecyloxybenzamide groups. The self-assembly of these [6]helicenes is strongly influenced by the substitution pattern in the helicene core that affects the mutual orientation of the monomeric units in the aggregated form. Thus, the 2,15-substituted derivative 1 undergoes an isodesmic supramolecular polymerization forming globular nanoparticles that maintain circularly polarized light (CPL) with glum values as high as 2 × 10-2. Unlike carbo[6]helicene 1, the 4,13-substituted derivative 2 follows a cooperative mechanism generating helical one-dimensional fibers. As a result of this helical organization, [6]helicene 2 exhibits a unique modification in its ECD spectral pattern showing sign inversion at low energy, accompanied by a sign change of the CPL with glum values of 1.2 × 10-3, thus unveiling an example of CPL inversion upon supramolecular polymerization. These helical supramolecular structures with high chiroptical activity, when deposited on conductive surfaces, revealed highly efficient electron-spin filtering abilities, with electron spin polarizations up to 80% for 1 and 60% for 2, as measured by magnetic conducting atomic force microscopy.

15.
Proc Natl Acad Sci U S A ; 116(13): 5931-5936, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846547

RESUMO

Biological structures rely on kinetically tuned charge transfer reactions for energy conversion, biocatalysis, and signaling as well as for oxidative damage repair. Unlike man-made electrical circuitry, which uses metals and semiconductors to direct current flow, charge transfer in living systems proceeds via biomolecules that are nominally insulating. Long-distance charge transport, which is observed routinely in nucleic acids, peptides, and proteins, is believed to arise from a sequence of thermally activated hopping steps. However, a growing number of experiments find limited temperature dependence for electron transfer over tens of nanometers. To account for these observations, we propose a temperature-independent mechanism based on the electric potential difference that builds up along the molecule as a precursor of electron transfer. Specifically, the voltage changes the nature of the electronic states away from being sharply localized so that efficient resonant tunneling across long distances becomes possible without thermal assistance. This mechanism is general and is expected to be operative in molecules where the electronic states densely fill a wide energy window (on the scale of electronvolts) above or below the gap between the highest-occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). We show that this effect can explain the temperature-independent charge transport through DNA and the strongly voltage-dependent currents that are measured through organic semiconductors and peptides.


Assuntos
Transporte de Elétrons , Ácidos Nucleicos/metabolismo , DNA/metabolismo , Condutividade Elétrica , Metabolismo Energético , Cinética , Modelos Teóricos , Peptídeos/metabolismo , Proteínas/metabolismo
16.
Nano Lett ; 21(20): 8657-8663, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662128

RESUMO

Organic molecules and specifically bio-organic systems are attractive for applications due to their low cost, variability, environmental friendliness, and facile manufacturing in a bottom-up fashion. However, due to their relatively low conductivity, their actual application is very limited. Chiral metallo-bio-organic crystals, on the other hand, have improved conduction and in addition interesting magnetic properties. We developed a spin transistor using these crystals and based on the chiral-induced spin selectivity effect. This device features a memristor type behavior, which depend on trapping both charges and spins. The spin properties are monitored by Hall signal and by an external magnetic field. The spin transistor exhibits nonlinear drain-source currents, with multilevel controlled states generated by the magnetization of the source. Varying the source magnetization enables a six-level readout for the two-terminal device. The simplicity of the device paves the way for its technological application in organic electronics and bioelectronics.


Assuntos
Eletrônica , Magnetismo , Condutividade Elétrica , Campos Magnéticos , Metais
17.
J Am Chem Soc ; 143(18): 7189-7195, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33926182

RESUMO

In past studies, spin selective transport was observed in polymers and supramolecular structures that are based on homochiral building blocks possessing stereocenters. Here we address the question to what extent chiral building blocks are required for observing the chiral induced spin selectivity (CISS) effect. We demonstrate the CISS effect in supramolecular polymers exclusively containing achiral monomers, where the supramolecular chirality was induced by chiral solvents that were removed from the fibers before measuring. Spin-selective transport was observed for electrons transmitted perpendicular to the fibers' long axis. The spin polarization correlates with the intensity of the CD spectra of the polymers, indicating that the effect is nonlocal. It is found that the spin polarization increases with the samples' thickness and the thickness dependence is the result of at least two mechanisms: the first is the CISS effect, and the second reduces the spin polarization due to scattering. Temperature dependence studies provide the first support for theoretical work that suggested that phonons may contribute to the spin polarization.

18.
Acc Chem Res ; 53(11): 2659-2667, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33044813

RESUMO

The electron's spin, its intrinsic angular momentum, is a quantum property that plays a critical role in determining the electronic structure of molecules. Despite its importance, it is not used often for controlling chemical processes, photochemistry excluded. The reason is that many organic molecules have a total spin zero, namely, all the electrons are paired. Even for molecules with high spin multiplicity, the spin orientation is usually only weakly coupled to the molecular frame of nuclei and hence to the molecular orientation. Therefore, controlling the spin orientation usually does not provide a handle on controlling the geometry of the molecular species during a reaction. About two decades ago, however, a new phenomenon was discovered that relates the electron's spin to the handedness of chiral molecules and is now known as the chiral induced spin selectivity (CISS) effect. It was established that the efficiency of electron transport through chiral molecules depends on the electron spin and that it changes with the enantiomeric form of a molecule and the direction of the electron's linear momentum. This property means that, for chiral molecules, the electron spin is strongly coupled to the molecular frame. Over the past few years, we and others have shown that this feature can be used to provide spin-control over chemical reactions and to perform enantioseparations with magnetic surfaces.In this Account, we describe the CISS effect and demonstrate spin polarization effects on chemical reactions. Explicitly, we describe a number of processes that can be controlled by the electron's spin, among them the interaction of chiral molecules with ferromagnetic surfaces, the multielectron oxidation of water, and enantiospecific electrochemistry. Interestingly, it has been shown that the effect also takes place in inorganic chiral oxides like copper oxide, aluminum oxide, and cobalt oxide. The CISS effect results from the coupling between the electron linear momentum and its spin in a chiral system. Understanding the implications of this interaction promises to reveal a previously unappreciated role for chirality in biology, where chiral molecules are ubiquitous, and opens a new avenue into spin-controlled processes in chemistry.

19.
Chemistry ; 27(1): 298-306, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32705726

RESUMO

Squaraine dyes are well known for their strong absorption in the visible regime. Reports on chiral squaraine dyes are, however, scarce. To address this gap, we here report two novel chiral squaraine dyes and their achiral counterparts. The presented dyes are aggregated in solution and in thin films. A detailed chiroptical study shows that thin films formed by co-assembling the chiral dye with its achiral counterpart exhibit exceptional photophysical properties. The circular dichroism (CD) of the co-assembled structures reaches a maximum when just 25 % of the chiral dye are present in the mixture. The solid structures with the highest relative CD effect are achieved when the chiral dye is used solely as a director, rather than the structural component. The chiroptical data are further supported by selected spin-filtering measurements using mc-AFM. These findings provide a promising platform for investigating the relationship between the dissymmetry of a supramolecular structure and emerging material properties rather than a comparison between a chiral molecular structure and an achiral counterpart.

20.
Chirality ; 33(2): 93-102, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400337

RESUMO

Monolayers of chiral molecules can preferentially transmit electrons with a specific spin orientation, introducing chiral molecules as efficient spin filters. This phenomenon is established as chirality-induced spin selectivity (CISS) and was demonstrated directly for the first time in self-assembled monolayers (SAMs) of double-stranded DNA (dsDNA)1 . Here, we discuss SAMs of double-stranded peptide nucleic acid (dsPNA) as a system which allows for systematic investigations of the influence of various molecular properties on CISS. In photoemission studies, SAMs of chiral, γ-modified PNA show significant spin filtering of up to P = (24.4 ± 4.3)% spin polarization. The polarization values found in PNA lacking chiral monomers are considerably lower at about P = 12%. The results confirm that the preferred spin orientation is directly linked to the molecular handedness and indicate that the spin filtering capacity of the dsPNA helices might be enhanced by introduction of chiral centers in the constituting peptide monomers.


Assuntos
Elétrons , Transporte de Elétrons , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA