RESUMO
Tuberculosis (TB) is caused by Mycobacterium tuberculosis. Host genetic factors are important for the detection of TB susceptibility. SLC11A1 is located in monocyte phagolysosomes that help to limit M. tuberculosis growth by transferring divalent cations across the membrane. Genetic variation in SLC11A1 may alter its expression and increase the susceptibility of individuals to TB. The current study aimed to provide insight into host genetic variations and gene expression in TB patients. A total of 164 TB patients and 85 healthy controls were enrolled in this study. SLC11A1 polymorphisms were detected by PCR-RFLP. Real-time qPCR was used for SLC11A1 gene expression, and ELISA was used for protein estimation. GTEx Portal was used for quantitative trait loci analysis, while the STRING (v.11) web platform was used for gene interactive network construction. Data were analyzed using SPSS, GraphPad Prism, Haploview, and SNPstats. SLC11A1 polymorphisms and combinatorial genotypes were strongly associated with TB susceptibility, which may explain the greater prevalence of tuberculosis in the local population. Polymorphisms in SLC11A1 have also been linked to gene expression variation. Furthermore, the expression of SLC11A1 was downregulated in TB patients, which may influence the function of other associated genes and may impair the immunological response to tuberculosis.
Assuntos
Proteínas de Transporte de Cátions/genética , Mycobacterium tuberculosis , Tuberculose , Predisposição Genética para Doença , Humanos , Imunidade , Polimorfismo Genético , Tuberculose/epidemiologia , Tuberculose/genéticaRESUMO
Background and Objective: Bacterial infections are among the major complications of many viral respiratory tract illnesses, such as influenza and coronavirus disease-2019 (COVID-19). These bacterial co-infections are associated with an increase in morbidity and mortality rates. The current observational study was conducted at a tertiary care hospital in Lahore, Pakistan among COVID-19 patients with the status of oxygen dependency to see the prevalence of bacterial co-infections and their antibiotic susceptibility patterns. Materials and Methods: A total of 1251 clinical samples were collected from already diagnosed COVID-19 patients and tested for bacterial identification (cultures) and susceptibility testing (disk diffusion and minimum inhibitory concentration) using gold standard diagnostic methods. Results: From the total collected samples, 234 were found positive for different bacterial isolates. The most common isolated bacteria were Escherichia coli (E. coli) (n = 62) and Acinetobacter baumannii (A. baumannii) (n = 47). The E. coli isolates have shown the highest resistance to amoxicillin and ampicillin, while in the case of A. baumannii, the highest resistance was noted against tetracycline. The prevalence of methicillin resistant Staphylococcus aureus (MRSA) was 14.9%, carbapenem resistant Enterobacteriaceae (CRE) was 4.5%, and vancomycin resistant Enterococcus (VRE) was 3.96%. Conclusions: The results of the current study conclude that empiric antimicrobial treatment in critically ill COVID-19 patients may be considered if properly managed within institutional or national level antibiotic stewardship programs, because it may play a protective role in the case of bacterial co-infections, especially when a patient has other AMR risk factors, such as hospital admission within the previous six months.
Assuntos
Acinetobacter baumannii , COVID-19 , Coinfecção , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , Resistência Microbiana a Medicamentos , Escherichia coli , Humanos , Paquistão/epidemiologiaRESUMO
Hereditary spastic paraplegias are a diverse group of degenerative disorders that are clinically categorized as isolated; with involvement of lower limb spasticity, or symptomatic, where spastic paraplegia is complicated by further neurological features. We sought to identify the underlying genetic causes of these disorders in the participating patients. Three consanguineous families with multiple affected members were identified by visiting special schools in the Punjab Province. DNA was extracted from blood samples of the participants. Exome sequencing was performed for selected patients from the three families, and the data were filtered to identify rare homozygous variants. ExomeDepth was used for the delineation of the copy number variants. All patients had varying degrees of intellectual disabilities, poor speech development, spasticity, a wide-based gait or an inability to walk and hypertonia. In family RDHR07, a homozygous deletion involving multiple exons and introns of SPG11 (NC000015.9:g.44894055_449028del) was found and correlated with the phenotype of the patients who had spasticity and other complex movement disorders, but not those who exhibited ataxic or indeterminate symptoms as well. In families ANMD03 and RDFA06, a nonsense variant, c.985C > T;(p.Arg329Ter) in DDHD2 and a frameshift insertionâdeletion variant of AP4B1, c.965-967delACTinsC;p.(Tyr322SerfsTer14), were identified which were homozygous in the patients while the obligate carriers in the respective pedigrees were heterozygous. All variants were ultra-rare with none, or very few carriers identified in the public databases. The three loss of function variants are likely to cause nonsense-mediated decay of the respective transcripts. Our research adds to the genetic variability associated with the SPG11 and AP4B1 variants and emphasizes the genetic heterogeneity of hereditary spastic paraplegia.