Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622887

RESUMO

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Emoções , Córtex Insular , Inibição Neural , Reconhecimento Psicológico , Percepção Visual , Animais , Nível de Alerta , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Emoções/efeitos dos fármacos , Emoções/fisiologia , Agonistas GABAérgicos/farmacologia , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Norepinefrina/administração & dosagem , Norepinefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologia
3.
Mol Psychiatry ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997609

RESUMO

Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.

4.
Brain ; 146(12): 5153-5167, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467479

RESUMO

Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.


Assuntos
Epilepsias Mioclônicas , Epilepsia Generalizada , Convulsões Febris , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Estudos Retrospectivos , Mutação/genética , Epilepsia Generalizada/genética , Fenótipo , Convulsões Febris/genética , Convulsões Febris/diagnóstico , Neurônios
5.
J Neurochem ; 167(1): 76-89, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650222

RESUMO

N-acetylneuraminic acid (sialic acid) is present in large quantities in the brain and plays a crucial role in brain development, learning, and memory formation. How sialic acid contributes to brain development is not fully understood. The purpose of this study was to determine the effects of reduced sialylation on network formation in human iPSC-derived neurons (iNeurons). Using targeted mass spectrometry and antibody binding, we observed an increase in free sialic acid and polysialic acid during neuronal development, which was disrupted by treatment of iNeurons with a synthetic inhibitor of sialic acid biosynthesis. Sialic acid inhibition disturbed synapse formation and network formation on microelectrode array (MEA), showing short but frequent (network) bursts and an overall lower firing rate, and higher percentage of random spikes. This study shows that sialic acid is necessary for neuronal network formation during human neuronal development and provides a physiologically relevant model to study the role of sialic acid in patient-derived iNeurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
6.
Mol Psychiatry ; 27(1): 1-18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33972691

RESUMO

Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-ß1 and Integrin-ß3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.


Assuntos
Caderinas , Neurônios GABAérgicos , Parvalbuminas , Caderinas/metabolismo , Neurônios GABAérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Integrinas/metabolismo , Parvalbuminas/metabolismo , Sinapses/metabolismo
7.
Epilepsia ; 64(8): 1975-1990, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195166

RESUMO

Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Ácido gama-Aminobutírico/fisiologia , Epilepsia/etiologia , Convulsões/complicações , Transtornos do Neurodesenvolvimento/complicações
8.
Neurobiol Dis ; 163: 105587, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923109

RESUMO

Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/genética , Neurônios Dopaminérgicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Receptores de N-Metil-D-Aspartato/metabolismo , Agressão , Transtornos Disruptivos, de Controle do Impulso e da Conduta/metabolismo , Transtornos Disruptivos, de Controle do Impulso e da Conduta/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Masculino , Monoaminoxidase/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Sinapses/metabolismo , Transmissão Sináptica/genética
9.
Cell Mol Life Sci ; 78(6): 2517-2563, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33263776

RESUMO

Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Animais , Cromatina/química , DNA Helicases/genética , DNA Helicases/metabolismo , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional/genética
10.
Genet Med ; 23(7): 1246-1254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824500

RESUMO

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Sequenciamento do Exoma
11.
Nucleic Acids Res ; 47(11): 5587-5602, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31049588

RESUMO

Remodeling of chromatin accessibility is necessary for successful reprogramming of fibroblasts to neurons. However, it is still not fully known which transcription factors can induce a neuronal chromatin accessibility profile when overexpressed in fibroblasts. To identify such transcription factors, we used ATAC-sequencing to generate differential chromatin accessibility profiles between human fibroblasts and iNeurons, an in vitro neuronal model system obtained by overexpression of Neurog2 in induced pluripotent stem cells (iPSCs). We found that the ONECUT transcription factor sequence motif was strongly associated with differential chromatin accessibility between iNeurons and fibroblasts. All three ONECUT transcription factors associated with this motif (ONECUT1, ONECUT2 and ONECUT3) induced a neuron-like morphology and expression of neuronal genes within two days of overexpression in fibroblasts. We observed widespread remodeling of chromatin accessibility; in particular, we found that chromatin regions that contain the ONECUT motif were in- or lowly accessible in fibroblasts and became accessible after the overexpression of ONECUT1, ONECUT2 or ONECUT3. There was substantial overlap with iNeurons, still, many regions that gained accessibility following ONECUT overexpression were not accessible in iNeurons. Our study highlights both the potential and challenges of ONECUT-based direct neuronal reprogramming.


Assuntos
Reprogramação Celular , Cromatina/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Fatores de Transcrição Onecut/genética , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Fatores de Transcrição Onecut/metabolismo , Fatores de Transcrição
12.
PLoS Genet ; 13(7): e1006886, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704368

RESUMO

Koolen-de Vries syndrome (KdVS) is a multi-system disorder characterized by intellectual disability, friendly behavior, and congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 chromosomal region or by variants in the KANSL1 gene. The reciprocal 17q21.31 microduplication syndrome is associated with psychomotor delay, and reduced social interaction. To investigate the pathophysiology of 17q21.31 microdeletion and microduplication syndromes, we generated three mouse models: 1) the deletion (Del/+); or 2) the reciprocal duplication (Dup/+) of the 17q21.31 syntenic region; and 3) a heterozygous Kansl1 (Kans1+/-) model. We found altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes observed in both Del/+ and Dup/+ animals. By investigating hippocampus function, we showed synaptic transmission defects in Del/+ and Dup/+ mice. Mutant mice with a heterozygous loss-of-function mutation in Kansl1 displayed similar behavioral and anatomical phenotypes compared to Del/+ mice with the exception of sociability phenotypes. Genes controlling chromatin organization, synaptic transmission and neurogenesis were upregulated in the hippocampus of Del/+ and Kansl1+/- animals. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS phenotypes and extend substantially our knowledge about biological processes affected by these mutations. Clear differences in social behavior and gene expression profiles between Del/+ and Kansl1+/- mice suggested potential roles of other genes affected by the 17q21.31 deletion. Together, these novel mouse models provide new genetic tools valuable for the development of therapeutic approaches.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Cromossômica/genética , Cognição , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Animais , Peso Corporal , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Deleção Cromossômica , Estruturas Cromossômicas/genética , Estruturas Cromossômicas/metabolismo , Cromossomos Humanos Par 17/genética , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Epigênese Genética , Feminino , Deleção de Genes , Rearranjo Gênico , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Proteínas Nucleares/metabolismo , Transmissão Sináptica/genética , Regulação para Cima
14.
Adv Exp Med Biol ; 1192: 297-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31705501

RESUMO

Neuropsychiatric disorders are a heterogeneous group of disorders that are challenging to model and treat, due to their underlying complex genetic architecture and clinical variability. Presently, increasingly more studies are making use of induced pluripotent stem cell (iPSC)-derived neurons, reprogrammed from patient somatic cells, to model neuropsychiatric disorders. iPSC-derived neurons offer the possibility to recapitulate relevant disease biology in the context of the individual patient genetic background. In addition to disease modeling, iPSC-derived neurons offer unprecedented opportunities in drug screening. In this chapter, the current status of iPSC disease modeling for neuropsychiatric disorders is presented. Both 2D and 3D disease modeling approaches are discussed as well as the generation of different neuronal cell types that are relevant for studying neuropsychiatric disorders. Moreover, the advantages and limitations are highlighted in addition to the future perspectives of using iPSC-derived neurons in the uncovering of robust cellular phenotypes that consecutively have the potential to lead to clinical developments.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos Mentais , Diferenciação Celular , Humanos , Neurônios
15.
Hum Mol Genet ; 25(5): 892-902, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721934

RESUMO

Recently, we marked TRIO for the first time as a candidate gene for intellectual disability (ID). Across diverse vertebrate species, TRIO is a well-conserved Rho GTPase regulator that is highly expressed in the developing brain. However, little is known about the specific events regulated by TRIO during brain development and its clinical impact in humans when mutated. Routine clinical diagnostic testing identified an intragenic de novo deletion of TRIO in a boy with ID. Targeted sequencing of this gene in over 2300 individuals with ID, identified three additional truncating mutations. All index cases had mild to borderline ID combined with behavioral problems consisting of autistic, hyperactive and/or aggressive behavior. Studies in dissociated rat hippocampal neurons demonstrated the enhancement of dendritic formation by suppressing endogenous TRIO, and similarly decreasing endogenous TRIO in organotypic hippocampal brain slices significantly increased synaptic strength by increasing functional synapses. Together, our findings provide new mechanistic insight into how genetic deficits in TRIO can lead to early neuronal network formation by directly affecting both neurite outgrowth and synapse development.


Assuntos
Transtorno Autístico/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Agitação Psicomotora/genética , Sinapses/metabolismo , Adulto , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Criança , Feminino , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Neurogênese , Neurônios/patologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/deficiência , Agitação Psicomotora/metabolismo , Agitação Psicomotora/patologia , Ratos , Análise de Sequência de DNA , Índice de Gravidade de Doença , Sinapses/patologia
16.
Am J Hum Genet ; 96(3): 386-96, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25704603

RESUMO

We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Homozigoto , Deficiência Intelectual/genética , Transtornos Mentais/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Distúrbios da Fala/genética , Tremor/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Exoma , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Transfecção , Adulto Jovem
17.
Cereb Cortex ; 27(2): 933-949, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158484

RESUMO

Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin transporter knockout (Sert-/-) rats, we demonstrate that high extracellular serotonin levels are associated with impaired feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence of these changes in network excitability is faster integration of the sensory information during whisker-based tactile navigation, as Sert-/- rats require fewer whisker contacts with tactile targets and perform object localization with faster reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of sensory cortical networks, and consequently with sensory perception.


Assuntos
Inibição Neural/fisiologia , Proteínas de Ligação a RNA/metabolismo , Córtex Somatossensorial/fisiologia , Navegação Espacial/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Espaço Extracelular/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Proteínas de Ligação a RNA/genética , Ratos Transgênicos , Ratos Wistar , Tempo de Reação/fisiologia , Serotonina/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Córtex Somatossensorial/patologia , Simportadores/metabolismo , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
18.
Genes Dev ; 23(11): 1289-302, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19487570

RESUMO

Oligophrenin-1 (OPHN1) encodes a Rho-GTPase-activating protein (Rho-GAP) whose loss of function has been associated with X-linked mental retardation (MR). The pathophysiological role of OPHN1, however, remains poorly understood. Here we show that OPHN1 through its Rho-GAP activity plays a critical role in the activity-dependent maturation and plasticity of excitatory synapses by controlling their structural and functional stability. Synaptic activity through NMDA receptor activation drives OPHN1 into dendritic spines, where it forms a complex with AMPA receptors, and selectively enhances AMPA-receptor-mediated synaptic transmission and spine size by stabilizing synaptic AMPA receptors. Consequently, decreased or defective OPHN1 signaling prevents glutamatergic synapse maturation and causes loss of synaptic structure, function, and plasticity. These results imply that normal activity-driven glutamatergic synapse development is impaired by perturbation of OPHN1 function. Thus, our findings link genetic deficits in OPHN1 to glutamatergic dysfunction and suggest that defects in early circuitry development are an important contributory factor to this form of MR.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/crescimento & desenvolvimento , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Endocitose/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/metabolismo , Deficiência Intelectual/fisiopatologia , N-Metilaspartato/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transporte Proteico/fisiologia , Ratos
19.
J Neurosci ; 34(26): 8665-71, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24966368

RESUMO

At glutamatergic synapses, local endocytic recycling of AMPA receptors (AMPARs) is important for the supply of a mobile pool of AMPARs required for synaptic potentiation. This local recycling of AMPARs critically relies on the presence of an endocytic zone (EZ) near the postsynaptic density (PSD). The precise mechanisms that couple the EZ to the PSD still remain largely elusive, with the large GTPase Dynamin-3 and the multimeric PSD adaptor protein Homer1 as the two main players identified. Here, we demonstrate that a physical interaction between the X-linked mental retardation protein oligophrenin-1 (OPHN1) and Homer1b/c is crucial for the positioning of the EZ adjacent to the PSD, and present evidence that this interaction is important for OPHN1's role in controlling activity-dependent strengthening of excitatory synapses in the rat hippocampus. Disruption of the OPHN1-Homer1b/c interaction causes a displacement of EZs from the PSD, along with impaired AMPAR recycling and reduced AMPAR accumulation at synapses, in both basal conditions and conditions that can induce synaptic potentiation. Together, our findings unveil a novel role for OPHN1 as an interaction partner of Homer1b/c in spine EZ positioning, and provide new mechanistic insight into how genetic deficits in OPHN1 can lead to impaired synapse maturation and plasticity.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Nucleares/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas de Arcabouço Homer , Neurônios/metabolismo , Ratos , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia
20.
Dev Biol ; 386(2): 395-407, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24362066

RESUMO

Haploinsufficiency of Euchromatin histone methyltransferase 1 (EHMT1), a chromatin modifying enzyme, is the cause of Kleefstra syndrome (KS). KS is an intellectual disability (ID) syndrome, with general developmental delay, hypotonia, and craniofacial dysmorphisms as additional core features. Recent studies have been focused on the role of EHMT1 in learning and memory, linked to the ID phenotype of KS patients. In this study we used the Ehmt1(+/-) mouse model, and investigated whether the core features of KS were mimicked in these mice. When comparing Ehmt1(+/-) mice to wildtype littermates we observed delayed postnatal growth, eye opening, ear opening, and upper incisor eruption, indicating a delayed postnatal development. Furthermore, tests for muscular strength and motor coordination showed features of hypotonia in young Ehmt1(+/-) mice. Lastly, we found that Ehmt1(+/-) mice showed brachycephalic crania, a shorter or bent nose, and hypertelorism, reminiscent of the craniofacial dysmorphisms seen in KS. In addition, gene expression analysis revealed a significant upregulation of the mRNA levels of Runx2 and several other bone tissue related genes in P28 Ehmt1(+/-) mice. Runx2 immunostaining also appeared to be increased. The mRNA upregulation was associated with decreased histone H3 lysine 9 dimethylation (H3K9me2) levels, the epigenetic mark deposited by Ehmt1, in the promoter region of these genes. Together, Ehmt1(+/-) mice indeed recapitulate KS core features and can be used as an animal model for Kleefstra syndrome. The increased expression of bone developmental genes in the Ehmt1(+/-) mice likely contributes to their cranial dysmorphisms and might be explained by diminished Ehmt1-induced H3K9 dimethylation.


Assuntos
Osso e Ossos/metabolismo , Anormalidades Craniofaciais/enzimologia , Anormalidades Craniofaciais/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cardiopatias Congênitas/enzimologia , Cardiopatias Congênitas/patologia , Histona-Lisina N-Metiltransferase/deficiência , Deficiência Intelectual/enzimologia , Deficiência Intelectual/patologia , Crânio/anormalidades , Análise de Variância , Animais , Imunoprecipitação da Cromatina , Deleção Cromossômica , Cromossomos Humanos Par 9/enzimologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Masculino , Camundongos , Camundongos Knockout , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Osteopontina , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA