Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1841(1): 204-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184513

RESUMO

In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n-9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1-6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n-9, 20:1n-9 and 20:2n-9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n-9→(Fads2)→18:2n-9→(Elovl5)→20:2n-9→(Fads1)→20:3n-9 and pathway 2) 18:1n-9→(Elovl5)→20:1n-9→(Fads2)→20:2n-9→(Fads1)→20:3n-9.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Acetiltransferases/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Essenciais/deficiência , Ácido 8,11,14-Eicosatrienoico/genética , Ácido 8,11,14-Eicosatrienoico/metabolismo , Acetiltransferases/genética , Animais , Biomarcadores/metabolismo , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácidos Graxos Essenciais/biossíntese , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Células NIH 3T3
2.
J Oleo Sci ; 70(2): 247-252, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33456009

RESUMO

This study aimed to compare the distribution of vitamin E analogs, particularly α-tocopherol and δ-tocopherol, in mice fed with a normal diet and a high-fat and high-sucrose diet separately. We used male C57BL/6JJcl strain mice, which were divided into six groups (control [C], Cα, Cδ, high-fat and high-sucrose [H], Hα, and Hδ groups) and bred for 4 weeks. The additional quantity of α-tocopherol or E-mix D (containing 86.7% δ-tocopherol) into diet was 800 mg/kg diet. The final body weight was significantly higher in the H group than in the C group. However, the effects of vitamin E analog intake had no significant difference, with no synergy between vitamin E and diet. Similar results were obtained in epididymal fat weight. Moreover, α-tocopherol was mainly distributed in the liver in both the Cα group and Hα group, whereas δ-tocopherol mostly accumulated in the epididymal fat, in both the Cδ group and Hδ group. Also, δ-tocopherol was detected in all tissues in both groups. Both the α-tocopherol and δ-tocopherol levels in the epididymal fat were significantly lower in the H group than in the C group. In conclusion, our results suggest that a portion of δ-tocopherol was incorporated into the adipose tissue by chylomicron before arriving at the liver, and then it is metabolized in the liver.


Assuntos
Tecido Adiposo/metabolismo , Tocoferóis/metabolismo , Animais , Quilomícrons/metabolismo , Dieta da Carga de Carboidratos , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Vitamina E/análogos & derivados , Vitamina E/metabolismo , alfa-Tocoferol/metabolismo
3.
J Oleo Sci ; 70(9): 1307-1315, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34373409

RESUMO

The study aim was to evaluate the potential anti-inflammatory effects of vitamin E analogs, especially α-tocopherol and δ-tocopherol. We used male C57BL/6JJcl mice, which were divided into four groups: the control (C), high-fat and high-sucrose diet (H), high-fat and high-sucrose diet+α-tocopherol (Ha) and high-fat and high-sucrose diet+δ-tocopherol (Hd) groups. The mice were fed for 16 weeks. To the high-fat and high-sucrose diet, 800 mg/kg of α-tocopherol or δ-tocopherol was added more. The final body weight was significantly higher in the H group than in the C group. On the other hand, the final body weight was drastically lower in the Ha group and Hd group than in the H group. However, the energy intake was not significantly different among all groups. Therefore, we assumed that α-tocopherol and δ-tocopherol have potential anti-obesity effect. Besides, inflammatory cytokine gene expression was significantly higher in the epididymal fat of the H group than in the C group. These results showed that inflammation was induced by epididymal fat of mice fed a high-fat and high-sucrose diet for 16 weeks. Unfortunately, addition of α-tocopherol or δ-tocopherol to the diet did not restrain inflammation of epididymal fat. Investigation of the anti-inflammatory effects of α-tocopherol or δ-tocopherol in co-cultured 3T3-L1 cells and RAW264.7 cells showed that δ-tocopherol inhibited increased gene expression of the inflammatory cytokines, IL-1ß, IL-6, and iNOS. These results suggest that an anti-inflammatory effect in the δ-tocopherol is stronger than that in the α-tocopherol in vitro. We intend to perform an experiment by in vivo sequentially in the future.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Tocoferóis/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios , Fármacos Antiobesidade , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Inflamação/etiologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Tocoferóis/uso terapêutico , alfa-Tocoferol/farmacologia , alfa-Tocoferol/uso terapêutico
4.
J Oleo Sci ; 70(9): 1317-1323, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34373411

RESUMO

This study aimed to determine if there are anti-inflammatory and anti-obesity effects of sweet basil, an herb, in mice. Sweet basil was administered as a powder to male C57BL/6JJcl mice, which were divided into three groups: the (control [C], high-fat and high-sucrose diet [H], and high-fat and high-sucrose diet plus sweet basil powder [HB]) groups. The mice were fed for 12 weeks and the dry sweet basil powder comprised 1% per kg of the diet. From experiment third week, the average body weight was significantly higher in the H group than in the C group. The average body weight was significantly lower in the HB group than in the H group, but food intake did not significantly differ between the H and HB groups. Liver weight was drastically lower in the HB group than in the H group. Perirenal fat weight and epididymal fat weight were not significantly different between the H and HB groups. Therefore, we assumed that body-weight reduction caused by sweet basil powder intake depended on inhibition of liver enlargement. We then examined lipid metabolism-related gene expression in the mice livers. Expression of the sterol response element binding protein 1-c gene tended to be lower in the HB group than in the H group (p=0.056). We speculated that sweet basil inhibited liver enlargement by suppressing fatty acid synthesis. Moreover, expression of the monocyte chemoattractant protein-1 gene in epididymal fat was significantly lower in the HB group than in the H group. Sweet basil powder appears to have a potent anti-inflammatory effect in the adipose tissue of mice fed a high-fat and high-sucrose diet.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Ocimum basilicum/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hipertrofia/prevenção & controle , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Pós , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
5.
J Oleo Sci ; 69(5): 487-493, 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32281564

RESUMO

Obesity, a lifestyle disease resulting from excessive caloric intake and insufficient physical activity, results in a state of chronic inflammation. A food ingredient that suppresses chronic inflammation could help prevent associated diseases. Sweet basil (Ocimum basilicum L.) is a herb from the Lamiaceae family with some reported anti-inflammatory effects. Via this in vitro study, we aimed to investigate whether sweet basil exerts anti-inflammatory effects in obese patients. Fresh sweet basil leaves were freeze-dried and powered. After that, this was extracted with 80% methanol. After 3T3-L1 adipocytes were cultured with sweet basil extracts at final concentrations of either 5 or 25 µg/mL for 24h, RAW264.7 macrophages were seeded onto this adipocytes and co-cultured for 12h. We determined the effects of sweet basil extracts on inflammatory cytokine expression by real-time PCR or western blotting. Sweet basil extracts reduced the expression of inflammatory cytokine mRNA induced by co-culture, including that of IL-6 (Il6), IL-1ß (Il1b), TNF-α (Tnf), and CCL2 (Ccl2). In addition, sweet basil extracts suppressed the mRNA expression of NF-κB (Nfκb1), a transcription factor of inflammatory cytokines. In an investigation of costimulatory CD137 (Tnfrsf9)/CD137L inflammatory signaling, a member of the TNF super-family, sweet basil extracts inhibited Tnfrsf9 expression induced by the co-culture. Therefore, the results of this study indicated that sweet basil extracts have an anti-inflammatory effect against adipocyte-induced inflammation, possibly through suppression of Tnfrsf9 expression.


Assuntos
Adipócitos/metabolismo , Anti-Inflamatórios , Técnicas de Cocultura , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Ocimum/química , Extratos Vegetais/farmacologia , Células 3T3 , Animais , Citocinas/genética , Expressão Gênica/efeitos dos fármacos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA