Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7855): 537-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883732

RESUMO

Recent multi-dimensional simulations suggest that high-entropy buoyant plumes help massive stars to explode1,2. Outwardly protruding iron (Fe)-rich fingers of gas in the galactic supernova remnant3,4 Cassiopeia A seem to match this picture. Detecting the signatures of specific elements synthesized in the high-entropy nuclear burning regime (that is, α-rich freeze out) would constitute strong substantiating evidence. Here we report observations of such elements-stable titanium (Ti) and chromium (Cr)-at a confidence level greater than 5 standard deviations in the shocked high-velocity Fe-rich ejecta of Cassiopeia A. We found that the observed Ti/Fe and Cr/Fe mass ratios require α-rich freeze out, providing evidence of the existence of the high-entropy ejecta plumes that boosted the shock wave at explosion. The metal composition of the plumes agrees well with predictions for strongly neutrino-processed proton-rich ejecta2,5,6. These results support the operation of the convective supernova engine via neutrino heating in the supernova that produced Cassiopeia A.

2.
Phys Rev Lett ; 129(18): 181101, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374675

RESUMO

Fully general-relativistic binary-neutron-star (BNS) merger simulations with quark-hadron crossover (QHC) equations of state (EOS) are studied for the first time. In contrast to EOS with purely hadronic matter or with a first-order quark-hadron phase transition (1PT), in the transition region QHC EOS show a peak in sound speed and thus a stiffening. We study the effects of such stiffening in the merger and postmerger gravitational (GW) signals. Through simulations in the binary-mass range 2.5

3.
Phys Rev Lett ; 105(9): 091101, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20868150

RESUMO

Recent results from the Pierre Auger Observatory, showing energy-dependent chemical composition of ultrahigh-energy cosmic rays (UHECRs) with a growing fraction of heavy elements at high energies, suggest a possible non-negligible contribution of the Galactic sources. We show that, in the case of UHECRs produced by gamma-ray bursts or rare types of supernova explosions that took place in the Milky Way in the past, the change in UHECR composition can result from the difference in diffusion times for different species. The anisotropy in the direction of the Galactic center is expected to be a few per cent on average, but the locations of the most recent or closest bursts can be associated with observed clusters of UHECRs.

4.
Nat Commun ; 10(1): 1504, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944310

RESUMO

Long duration gamma-ray bursts (GRBs), the brightest events since the Big Bang itself, are believed to originate in an ultra-relativistic jet breaking out from a massive stellar envelope. Despite decades of study, there is still no consensus on their emission mechanism. One unresolved question is the origin of the tight correlation between the spectral peak energy and peak luminosity discovered in observations. This Yonetoku relation is the tightest correlation found in the properties of the prompt phase of GRB emission, providing the best diagnostic for the radiation mechanism. Here we present three-dimensional hydrodynamical simulations, and post-process radiation transfer calculations, of photospheric emission from a relativistic jet. Our simulations reproduce the Yonetoku relation as a natural consequence of viewing angle. Although jet dynamics depend sensitively on luminosity, the correlation holds regardless. This result strongly suggests that photospheric emission is the dominant component in the prompt phase of GRBs.

5.
Phys Rev Lett ; 97(5): 051101, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-17026092

RESUMO

The recent observations of bright optical and x-ray flares by the Swift satellite suggest these are produced by the late activities of the central engine. We study the neutrino emission from far-ultraviolet and x-ray flares under the late internal shock model. We show that the efficiency of pion production in the highest energy is comparable to or higher than the unity, and the contribution from such neutrino flashes to a diffuse very high energy neutrino background can be larger than that of prompt bursts if the total baryonic energy input into flares is comparable to the radiated energy of prompt bursts. These signals may be detected by IceCube and are very important because they have possibilities to probe the nature of flares (the baryon loading, the photon field, the magnetic field and so on).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA