Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(27)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37015220

RESUMO

In-plane selective area growth (SAG) of III-V nanowires (NWs) has emerged as a scalable materials platform for quantum electronics and photonics applications. Most applications impose strict requirements on the material characteristics which makes optimization of the crystal quality vital. Alignment of in-plane SAG NWs with respect to the substrate symmetry is of importance due to the large substrate-NW interface as well as to obtain nanostructures with well-defined facets. Understanding the role of mis-orientation is thus important for designing devices and interpretation of electrical performance of devices. Here we study the effect of mis-orientation on morphology of selectively grown NWs oriented along the [1 1̅ 1̅] direction on GaAs(2 1 1)B. Atomic force microscopy is performed to extract facet roughness as a measure of structural quality. Further, we evaluate the dependence of material incorporation in NWs on the orientation and present the facet evolution in between two high symmetry in-plane orientations. By investigating the length dependence of NW morphology, we find that the morphology of ≈1µm long nominally aligned NWs remains unaffected by the unintentional misalignment associated with the processing and alignment of the sample under study. Finally, we show that using Sb as a surfactant during growth improves root-mean-square facet roughness for large misalignment but does not lower it for nominally aligned NWs.

2.
Sci Rep ; 13(1): 14991, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696841

RESUMO

The great demand on the energy makes the attention toward modifying lubricating oil. This work tends to prepare the following copolymers; octadecylmethacrylate-co-dodecene (CP1) and octadecylmethacrylate-co-hexadecene (CP2) by free radical solution polymerization using laboratory prepared octadecylmethacrylate monomer with either 1-dodecene or 1-hexadecene. The same monomers also used to prepare their polymers nanocomposite (NP1, NP2) with 1% of nanomontmorolonite by emulsion polymerization. The structures of the prepared polymers and their nanocomposite were elucidated by FTIR, 1HNMR, TGA, DSC, TEM and DLS. These polymers were used as pour point depressant, flow improver and viscosity modifier and showed high efficiency. After comparison of the data of the polymers and their nanocomposite, the nanocomposite give the best results where the pour point decreased from 0 °C to - 18, - 27, - 24 and - 33 °C for CP1, CP2, NP1 and NP2 respectively at the optimum concentration 10,000 ppm. On the other hand the viscosity index increased from 86.57 to 93.25, 92.41, 94.17 and 93.103 for CP1, CP2, NP1 and NP2 respectively, the apparent viscosity increased from 55.863 to 69.31, 119.41, 111.28, and 166.89 cP also the yield stress increased from 652.19 to 1076.3, 1074 and 1480 D/cm2 for CP1, CP2, NP1 and NP2 respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA