Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882310

RESUMO

Functional connectivity within resting-state networks (RSN-FC) is vital for cognitive functioning. RSN-FC is heritable and partially translates to the anatomic architecture of white matter, but the genetic component of structural connections of RSNs (RSN-SC) and their potential genetic overlap with RSN-FC remain unknown. Here, we perform genome-wide association studies (N discovery = 24,336; N replication = 3412) and annotation on RSN-SC and RSN-FC. We identify genes for visual network-SC that are involved in axon guidance and synaptic functioning. Genetic variation in RSN-FC impacts biological processes relevant to brain disorders that previously were only phenotypically associated with RSN-FC alterations. Correlations of the genetic components of RSNs are mostly observed within the functional domain, whereas less overlap is observed within the structural domain and between the functional and structural domains. This study advances the understanding of the complex functional organization of the brain and its structural underpinnings from a genetics viewpoint.


Assuntos
Mapeamento Encefálico , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Cognição , Rede Nervosa/diagnóstico por imagem
2.
Commun Biol ; 5(1): 710, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842455

RESUMO

Cerebellar volume is highly heritable and associated with neurodevelopmental and neurodegenerative disorders. Understanding the genetic architecture of cerebellar volume may improve our insight into these disorders. This study aims to investigate the convergence of cerebellar volume genetic associations in close detail. A genome-wide associations study for cerebellar volume was performed in a discovery sample of 27,486 individuals from UK Biobank, resulting in 30 genome-wide significant loci and a SNP heritability of 39.82%. We pinpoint the likely causal variants and those that have effects on amino acid sequence or cerebellar gene-expression. Additionally, 85 genome-wide significant genes were detected and tested for convergence onto biological pathways, cerebellar cell types, human evolutionary genes or developmental stages. Local genetic correlations between cerebellar volume and neurodevelopmental and neurodegenerative disorders reveal shared loci with Parkinson's disease, Alzheimer's disease and schizophrenia. These results provide insights into the heritable mechanisms that contribute to developing a brain structure important for cognitive functioning and mental health.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Encéfalo , Estudo de Associação Genômica Ampla/métodos , Humanos , Saúde Mental , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
3.
Nat Genet ; 54(12): 1795-1802, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471075

RESUMO

The widespread comorbidity among psychiatric disorders demonstrated in epidemiological studies1-5 is mirrored by non-zero, positive genetic correlations from large-scale genetic studies6-10. To identify shared biological processes underpinning this observed phenotypic and genetic covariance and enhance molecular characterization of general psychiatric disorder liability11-13, we used several strategies aimed at uncovering pleiotropic, that is, cross-trait-associated, single-nucleotide polymorphisms (SNPs), genes and biological pathways. We conducted cross-trait meta-analysis on 12 psychiatric disorders to identify pleiotropic SNPs. The meta-analytic signal was driven by schizophrenia, hampering interpretation and joint biological characterization of the cross-trait meta-analytic signal. Subsequent pairwise comparisons of psychiatric disorders identified substantial pleiotropic overlap, but mainly among pairs of psychiatric disorders, and mainly at less stringent P-value thresholds. Only annotations related to evolutionarily conserved genomic regions were significant for multiple (9 out of 12) psychiatric disorders. Overall, identification of shared biological mechanisms remains challenging due to variation in power and genetic architecture between psychiatric disorders.


Assuntos
Genômica , Transtornos Mentais , Humanos , Transtornos Mentais/genética
4.
Nat Commun ; 11(1): 5606, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154357

RESUMO

The phenotypic correlation between human intelligence and brain volume (BV) is considerable (r ≈ 0.40), and has been shown to be due to shared genetic factors. To further examine specific genetic factors driving this correlation, we present genomic analyses of the genetic overlap between intelligence and BV using genome-wide association study (GWAS) results. First, we conduct a large BV GWAS meta-analysis (N = 47,316 individuals), followed by functional annotation and gene-mapping. We identify 18 genomic loci (14 not previously associated), implicating 343 genes (270 not previously associated) and 18 biological pathways for BV. Second, we use an existing GWAS for intelligence (N = 269,867 individuals), and estimate the genetic correlation (rg) between BV and intelligence to be 0.24. We show that the rg is partly attributable to physical overlap of GWAS hits in 5 genomic loci. We identify 92 shared genes between BV and intelligence, which are mainly involved in signaling pathways regulating cell growth. Out of these 92, we prioritize 32 that are most likely to have functional impact. These results provide information on the genetics of BV and provide biological insight into BV's shared genetic etiology with intelligence.


Assuntos
Encéfalo/anatomia & histologia , Genoma Humano/genética , Inteligência/genética , Encéfalo/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Modelos Neurológicos , Tamanho do Órgão , Locos de Características Quantitativas
5.
Nat Genet ; 51(3): 394-403, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804565

RESUMO

Insomnia is the second most prevalent mental disorder, with no sufficient treatment available. Despite substantial heritability, insight into the associated genes and neurobiological pathways remains limited. Here, we use a large genetic association sample (n = 1,331,010) to detect novel loci and gain insight into the pathways, tissue and cell types involved in insomnia complaints. We identify 202 loci implicating 956 genes through positional, expression quantitative trait loci, and chromatin mapping. The meta-analysis explained 2.6% of the variance. We show gene set enrichments for the axonal part of neurons, cortical and subcortical tissues, and specific cell types, including striatal, hypothalamic, and claustrum neurons. We found considerable genetic correlations with psychiatric traits and sleep duration, and modest correlations with other sleep-related traits. Mendelian randomization identified the causal effects of insomnia on depression, diabetes, and cardiovascular disease, and the protective effects of educational attainment and intracranial volume. Our findings highlight key brain areas and cell types implicated in insomnia, and provide new treatment targets.


Assuntos
Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Distúrbios do Início e da Manutenção do Sono/genética , Cromatina/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Sono/genética
6.
Nat Commun ; 9(1): 905, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500382

RESUMO

Genome-wide association studies (GWAS) of psychological traits are generally conducted on (dichotomized) sums of items or symptoms (e.g., case-control status), and not on the individual items or symptoms themselves. We conduct large-scale GWAS on 12 neuroticism items and observe notable and replicable variation in genetic signal between items. Within samples, genetic correlations among the items range between 0.38 and 0.91 (mean rg = .63), indicating genetic heterogeneity in the full item set. Meta-analyzing the two samples, we identify 255 genome-wide significant independent genomic regions, of which 138 are item-specific. Genetic analyses and genetic correlations with 33 external traits support genetic differences between the items. Hierarchical clustering analysis identifies two genetically homogeneous item clusters denoted depressed affect and worry. We conclude that the items used to measure neuroticism are genetically heterogeneous, and that biological understanding can be gained by studying them in genetically more homogeneous clusters.


Assuntos
Heterogeneidade Genética , Neuroticismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Metanálise como Assunto , Anotação de Sequência Molecular , Fenótipo
7.
Nat Genet ; 50(7): 920-927, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942085

RESUMO

Neuroticism is an important risk factor for psychiatric traits, including depression1, anxiety2,3, and schizophrenia4-6. At the time of analysis, previous genome-wide association studies7-12 (GWAS) reported 16 genomic loci associated to neuroticism10-12. Here we conducted a large GWAS meta-analysis (n = 449,484) of neuroticism and identified 136 independent genome-wide significant loci (124 new at the time of analysis), which implicate 599 genes. Functional follow-up analyses showed enrichment in several brain regions and involvement of specific cell types, including dopaminergic neuroblasts (P = 3.49 × 10-8), medium spiny neurons (P = 4.23 × 10-8), and serotonergic neurons (P = 1.37 × 10-7). Gene set analyses implicated three specific pathways: neurogenesis (P = 4.43 × 10-9), behavioral response to cocaine processes (P = 1.84 × 10-7), and axon part (P = 5.26 × 10-8). We show that neuroticism's genetic signal partly originates in two genetically distinguishable subclusters13 ('depressed affect' and 'worry'), suggesting distinct causal mechanisms for subtypes of individuals. Mendelian randomization analysis showed unidirectional and bidirectional effects between neuroticism and multiple psychiatric traits. These results enhance neurobiological understanding of neuroticism and provide specific leads for functional follow-up experiments.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Neuroticismo/fisiologia , Adulto , Idoso , Transtornos de Ansiedade/genética , Axônios/fisiologia , Depressão/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurogênese/genética , Neurônios/fisiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Esquizofrenia/genética
8.
Nat Genet ; 50(7): 912-919, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942086

RESUMO

Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.


Assuntos
Inteligência/genética , Adolescente , Encéfalo/fisiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA