Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684803

RESUMO

Wearable sensors are gaining attention in human health monitoring applications, even if their usability is limited due to battery need. Flexible nanogenerators (NGs) converting biomechanical energy into electrical energy offer an interesting solution, as they can supply the sensors or extend the battery lifetime. Herein, flexible generators based on lead-free barium titanate (BaTiO3) and a polydimethylsiloxane (PDMS) polymer have been developed. A comparative study was performed to investigate the impact of multiwalled carbon nanotubes (MWCNTs) via structural, morphological, electrical, and electromechanical measurements. This study demonstrated that MWCNTs boosts the performance of the NG at the percolation threshold. This enhancement is attributed to the enhanced conductivity that promotes charge transfer and enhanced mechanical property and piezoceramics particles distribution. The nanogenerator delivers a maximum open-circuit voltage (VOC) up to 1.5 V and output power of 40 nW, which is two times higher than NG without MWCNTs. Additionally, the performance can be tuned by controlling the composite thickness and the applied frequency. Thicker NG shows a better performance, which enlarges their potential use for harvesting biomechanical energy efficiently up to 11.22 V under palm striking. The voltage output dependency on temperature was also investigated. The results show that the output voltage changes enormously with the temperature.


Assuntos
Nanotubos de Carbono , Polímeros , Compostos de Bário , Dimetilpolisiloxanos , Fontes de Energia Elétrica , Humanos , Titânio
2.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684867

RESUMO

Energy harvesting from flowing water is important for supplying hydrometric monitoring systems. Nevertheless, it is challenging due to the chaotic water flow in only one main direction and the relatively weak energy profile. In this paper, a novel energy harvester has been proposed, designed, and validated. The converter consists of a pendulum, a gearbox, two overrunning clutches, a spiral spring, and a generator. By coupling the kinetic energy via an oscillating mass equipped with a magnetic spring, it is possible to accommodate the power supply, electronics, and sensors with data transmission in a completely closed, encapsulated, stable housing without an interface to the outside. In addition, an energy management circuit and a battery charging circuit were developed that could be housed in the sealed enclosure. The pendulum transducer prototype was tested with the developed online hydrometric measurement station, which consists of a multi-channel data logger with a cellular modem and a tipping bucket rain gauge sensor. The overall system was successfully validated by experimental studies in a river.


Assuntos
Chuva , Rios , Eletrônica , Fenômenos Físicos , Água
3.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466681

RESUMO

Nowadays, wireless sensor networks are becoming increasingly important in several sectors including industry, transportation, environment and medicine. This trend is reinforced by the spread of Internet of Things (IoT) technologies in almost all sectors. Autonomous energy supply is thereby an essential aspect as it decides the flexible positioning and easy maintenance, which are decisive for the acceptance of this technology, its wide use and sustainability. Significant improvements made in the last years have shown interesting possibilities for realizing energy-aware wireless sensor nodes (WSNs) by designing manifold and highly efficient energy converters and reducing energy consumption of hardware, software and communication protocols. Using only a few of these techniques or focusing on only one aspect is not sufficient to realize practicable and market relevant solutions. This paper therefore provides a comprehensive review on system design for battery-free and energy-aware WSN, making use of ambient energy or wireless energy transmission. It addresses energy supply strategies and gives a deep insight in energy management methods as well as possibilities for energy saving on node and network level. The aim therefore is to provide deep insight into system design and increase awareness of suitable techniques for realizing battery-free and energy-aware wireless sensor nodes.

4.
ACS Omega ; 9(26): 28951-28960, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973911

RESUMO

In the modern era of the Internet of Things, the potential role of flexible piezoelectric generators (PEG) reflects the rapid increase in self-powered devices and wearable technologies. In this study, a casting process to elaborate the polydimethylsiloxane (PDMS)/barium titanate (BaTiO 3) composite has been presented. The addition of 15 wt % BaTiO 3 microparticles into the PDMS polymer greatly enhances the piezoelectric coefficient (d 31 = 24 pC N-1), leading to an increased output voltage of approximately 4 V under finger tapping force. The proposed flexible microgenerator yielded an excellent piezoelectric figure of merit (FoM 31 = 13.1 × 10-12 m2 N-1), significantly enhancing successfully the energy-harvesting performance (power density of 35 nW/cm2). Furthermore, the fabricated lead-free PEG exhibited an excellent flexibility figure of merit (fFoM) due to the low young modulus values (Maximum E = 3.4 MPa). These results indicate efficient energy conversion and demonstrate a favorable balance between the flexibility and piezoelectric properties of the composite, highlighting its potential for a wide range of applications in self-powered wearable sensors able to collect different human motions in applications such as gesture tracking and finger motion detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA