Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Am Chem Soc ; 146(2): 1346-1355, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170469

RESUMO

RNA therapeutics are of global interest because of their versatility in targeting a variety of intracellular and extracellular biomolecules. In that context, long double-stranded RNA (dsRNA) has been studied as an antitumor agent that activates the immune response. However, its performance is constrained by poor cancer selectivity and cell-penetration ability. Here, we designed and synthesized an oncolytic RNA hairpin pair (oHP) that was selectively cytotoxic toward cancer cells expressing abundant oncogenic microRNA-21 (miR-21). Although the structure of each hairpin RNA was thermodynamically metastable, catalytic miR-21 input triggered it to open to generate a long nicked dsRNA. We demonstrated that oHP functioned as a cytotoxic amplifier of information in the presence of miR-21 in various cancer cells and tumor-bearing mice. This work represents the first example of the use of short RNA molecules as build-up-type anticancer agents that are triggered by an oncogenic miRNA.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Animais , Camundongos , MicroRNAs/genética , RNA de Cadeia Dupla , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Bioconjug Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959052

RESUMO

Currently, there is no effective treatment for glioblastoma multiforme (GBM), the most frequent and malignant type of brain tumor. The blood-brain (tumor) barrier (BB(T)B), which is composed of tightly connected endothelial cells and pericytes (with partial vasculature collapse), hampers nanomedicine accumulation in tumor tissues. We aimed to explore the effect of nanomedicine size on passive targeting of GBM. A series of size-tunable poly(ethylene glycol) (PEG)-grafted copolymers (gPEGs) were constructed with hydrodynamic diameters of 8-30 nm. Biodistribution studies using orthotopic brain tumor-bearing mice revealed that gPEG brain tumor accumulation was maximized at 10 nm with ∼14 dose %/g of tumor, which was 19 times higher than that in the normal brain region and 4.2 times higher than that of 30-nm gPEG. Notably, 10-nm gPEG exhibited substantially higher brain tumor accumulation than 11-nm linear PEG owing to the prolonged blood circulation property of gPEGs, which is derived from a densely PEG-packed structure. 10 nm gPEG exhibited deeper penetration into the brain tumor tissue than the larger gPEGs did (>10 nm). This study demonstrates, for the first time, the great potential of a nanomedicine downsizing strategy for passive GBM targeting.

3.
Bioconjug Chem ; 35(2): 125-131, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38290165

RESUMO

Various cationic polymers are used to deliver polyplex-mediated antisense oligonucleotides (ASOs). However, few studies have investigated the structural determinants of polyplex functionalities in polymers. This study focused on the polymer hydrophobicity. A series of amphiphilic polyaspartamide derivatives possessing various hydrophobic (R) moieties together with cationic diethylenetriamine (DET) moieties in the side chain (PAsp(DET/R)s) were synthesized to optimize the R moieties (or hydrophobicity) for locked nucleic acid (LNA) gapmer ASO delivery. The gene knockdown efficiencies of PAsp(DET/R) polyplexes were plotted against a hydrophobicity parameter, logD7.3, of PAsp(DET/R), revealing that the gene knockdown efficiency was substantially improved by PAsp(DET/R) with logD7.3 higher than -2.4. This was explained by the increased polyplex stability and improved cellular uptake of ASO payloads. After intratracheal administration, the polyplex samples with a higher logD7.3 than -2.4 induced a significantly higher gene knockdown in the lung tissue compared with counterparts with lower hydrophobicity and naked ASO. These results demonstrate that the hydrophobicity of PAsp(DET/R) is crucial for efficient ASO delivery in vitro and in vivo.


Assuntos
Oligonucleotídeos Antissenso , Polímeros , Polímeros/química
4.
FASEB J ; 36(9): e22486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929425

RESUMO

Neointimal hyperplasia (NIH) after revascularization is a key unsolved clinical problem. Various studies have shown that attenuation of the acute inflammatory response on the vascular wall can prevent NIH. MicroRNA146a-5p (miR146a-5p) has been reported to show anti-inflammatory effects by inhibiting the NF-κB pathway, a well-known key player of inflammation of the vascular wall. Here, a nanomedicine, which can reach the vascular injury site, based on polymeric micelles was applied to deliver miR146a-5p in a rat carotid artery balloon injury model. In vitro studies using inflammation-induced vascular smooth muscle cell (VSMC) was performed. Results showed anti-inflammatory response as an inhibitor of the NF-κB pathway and VSMC migration, suppression of reactive oxygen species production, and proinflammatory cytokine gene expression in VSMCs. A single systemic administration of miR146a-5p attenuated NIH and vessel remodeling in a carotid artery balloon injury model in both male and female rats in vivo. MiR146a-5p reduced proinflammatory cytokine gene expression in injured arteries and monocyte/macrophage infiltration into the vascular wall. Therefore, miR146a-5p delivery to the injury site demonstrated therapeutic potential against NIH after revascularization.


Assuntos
Lesões das Artérias Carótidas , MicroRNAs , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artérias , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Citocinas/metabolismo , Feminino , Hiperplasia/metabolismo , Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Nanomedicina , Neointima/tratamento farmacológico , Neointima/metabolismo , Neointima/prevenção & controle , Ratos
5.
Exp Eye Res ; 223: 109206, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35921961

RESUMO

Multiple intravitreal injections, which are painful and costly, are often required in the treatment of retinal disorders. Therefore, a novel drug delivery system using hydrogels is currently being evaluated as an alternative. This study aimed to evaluate the ability of tetra-armed polyethylene glycol (tetra-PEG) gel for sustained release in vitro. Bevacizumab-loaded tetra-PEG gel and 5-Carboxyfluorescein N-succinimidyl ester (FAM-NHS)-labeled IgG-loaded tetra-PEG gel were prepared by mixing tetra-PEG with thiol termini (tetra-PEG-SH) solution, maleimide termini (tetra-PEG-MA) solution, and bevacizumab or FAM-NHS labeled IgG. The gels were prepared with three different polymer concentrations of 1.5%, 5%, and 10%, then an in vitro release study performed to assess the sustained release ability of the drug-loaded tetra-PEG gels. High performance liquid chromatography (HPLC) was used to test the structural stability of the bevacizumab released from the tetra-PEG gel. The binding of bevacizumab to tetra-PEG-SH or MA was assessed using SDS-polyacrylamide gel electrophoresis (PAGE). The bioactivity of released bevacizumab was tested using KDR/NFAT-RE HEK293 cells. In addition, in vitro degradation and swelling studies were also performed. The in vitro release analysis showed that the release of bevacizumab was slower in the 5% and 10% tetra-PEG gels than that of 1.5% tetra-PEG gels. Similarly, the release of FAM-NHS-labeled IgG was slowest in the 1.5%, 5%, and 10% tetra-PEG gels, in that order. The 5% and 10% tetra-PEG gels released bevacizumab and FAM-NHS-labeled IgG over a period of 1-2 weeks. Both bevacizumab and FAM-NHS-labeled IgG were not fully released in 2 weeks. HPLC analysis showed that the retention time of the samples released from the bevacizumab-loaded tetra-PEG gel was similar to that of the bevacizumab standard. The SDS-PAGE analysis showed that bevacizumab binds to tetra-PEG-MA. The bioactivity assay test revealed no decrease in the bioactivity of the released bevacizumab. In vitro degradation and swelling studies revealed that 1.5%, 5%, and 10% tetra-PEG gels expanded by approximately 1.4-, 2-, and 3-fold, respectively. Based on the results of the release and swelling tests, 5% tetra-PEG gels are considered good candidates for controlled release systems for therapeutic antibodies such as bevacizumab. The binding of PEG to the therapeutic antibodies may reduce the availability of therapeutic antibodies that can be released.


Assuntos
Hidrogéis , Polietilenoglicóis , Bevacizumab , Preparações de Ação Retardada , Ésteres , Células HEK293 , Humanos , Imunoglobulina G , Maleimidas/química , Polietilenoglicóis/química , Polímeros/química , Compostos de Sulfidrila
6.
Biomacromolecules ; 23(1): 388-397, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34935361

RESUMO

To stabilize small interfering RNA (siRNA) in the bloodstream for systemic RNAi therapeutics, we previously fabricated ultrasmall siRNA nanocarriers that were sub-20 nm in hydrodynamic diameter, named as unit polyion complexes (uPICs), using two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The blood retention time of uPICs is dramatically increased in the presence of free bPEG-PLys, suggesting dynamic stabilization of uPICs by free bPEG-PLys based on their equilibrium. Herein, we examined how the degree of polymerization of PLys (DPPLys) affected the dynamic stability of uPICs in the bloodstream during prolonged circulation. We prepared a series of bPEG-PLys with DPPLys values of 10, 13, 20, 40, and 80 for the uPIC formation and siRNA with 40 negative charges. These bPEG-PLys were then evaluated in physicochemical characterization and pharmacokinetic analyses. Structural analyses revealed that the uPIC size and association numbers were mainly determined by the molecular weights of PEG and DPPLys, respectively. Under bPEG-PLys-rich conditions, the hydrodynamic diameters of uPICs were 15-20 nm, which were comparable to that of the bPEG block (i.e., ∼18 nm). Importantly, DPPLys significantly affected the association constant of bPEG-PLys to siRNA (Ka) and blood retention of free bPEG-PLys. A smaller DPPLys resulted in a lower Ka and a longer blood retention time of free bPEG-PLys. Thus, DPPLys can control the dynamic stability of uPICs, i.e., the balance between Ka and blood concentration of free bPEG-PLys. Ultimately, the bPEG-PLys with DPPLys values of 14 and 19 prolonged the blood circulation of siRNA-loaded uPICs with relatively small amounts of free bPEG-PLys. This study revealed that the uPIC formation between siRNA and bPEG-PLys can be controlled by their charges, which may be helpful for designing PIC-based delivery systems.


Assuntos
Lisina , Polietilenoglicóis , Cátions , Lisina/análogos & derivados , Polietilenoglicóis/química , RNA Interferente Pequeno/química
7.
Sci Technol Adv Mater ; 22(1): 850-863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658669

RESUMO

RNA interference (RNAi) by small interfering RNAs (siRNAs) is a promising therapeutic approach. Because siRNA has limited intracellular access and is rapidly cleared in vivo, the success of RNAi depends on efficient delivery technologies. Particularly, polyion complexation between block catiomers and siRNA is a versatile approach for constructing effective carriers, such as unit polyion complexes (uPIC), core-shell polyion complex (PIC) micelles and vesicular siRNAsomes, by engineering the structure of block catiomers. In this regard, the flexibility of block catiomers could be an important parameter in the formation of PIC nanostructures with siRNA, though its effect remains unknown. Here, we studied the influence of block catiomer flexibility on the assembly of PIC structures with siRNA using a complementary polymeric system, i.e. poly(ethylene glycol)-poly(L-lysine) (PEG-PLL) and PEG-poly(glycidylbutylamine) (PEG-PGBA), which has a relatively more flexible polycation segment than PEG-PLL. Mixing PEG-PGBA with siRNA at molar ratios of primary amines in polymer to phosphates in the siRNA (N/P ratios) higher than 1.5 promoted the multimolecular association of uPICs, whereas PEG-PLL formed uPIC at all N/P ratios higher than 1. Moreover, uPICs from PEG-PGBA were more stable against counter polyanion exchange than uPICs from PEG-PLL, probably due to a favorable complexation process, as suggested by computational studies of siRNA/block catiomer binding. In in vitro experiments, PEG-PGBA uPICs promoted effective intracellular delivery of siRNA and efficient gene knockdown. Our results indicate the significance of polycation flexibility on assembling PIC structures with siRNA, and its potential for developing innovative delivery systems.

8.
Cancer Sci ; 111(7): 2440-2450, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32437068

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer compared with luminal or epidermal growth factor receptor 2 subtypes, thus effective therapeutic options for TNBC are yet to be developed. Nowadays, oncogenic long noncoding RNAs (lncRNAs) are applied to cancer management as a new class of therapeutic targets. We previously showed that thymopoietin antisense transcript 1 (TMPO-AS1) is a proliferation-associated lncRNA that contributes to hormone-dependent breast cancer progression by stabilizing estrogen receptor-α mRNA. We here showed that TMPO-AS1 is abundantly expressed in basal-like breast cancer subtype based on the transcriptomic data in The Cancer Genome Atlas as well as in TNBC cell lines and patient-derived cells. Small interfering RNA-based loss-of-function analyses showed that TMPO-AS1 knockdown substantially represses the proliferation and migration of TNBC cells. Expression microarray analysis showed that TMPO-AS1 alters gene signatures related to transforming growth factor-ß signaling in addition to proliferative E2F signaling pathways. TMPO-AS1-targeted siRNA treatment through engineered drug delivery systems using cancer-targeted polyion complex micelle or nanoball technology significantly impaired the in vivo growth of primary and metastatic TNBC xenograft tumors. Our findings suggest that TMPO-AS1 plays a key role in TNBC pathophysiology and could be a potential therapeutic target for TNBC.


Assuntos
Biomarcadores Tumorais , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
9.
Bioconjug Chem ; 31(5): 1320-1326, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32352276

RESUMO

Whereas small siRNA nanocarriers with a size of 10-20 nm exert high tissue-permeability, they encounter the challenge of inefficient adsorption on the cell surface, resulting in poor cellular uptake of siRNA. To solve this dilemma, this study aims to control the hydrophobicity of a small siRNA nanocarrier, unimer polyion complex (uPIC), with a size of ∼10 nm. The uPICs are fabricated to consist of a single pair between siRNA and a smart triblock copolymer comprising hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx), thermoswitchable poly(2-n-propyl-2-oxazoline) (PnPrOx), and cationic poly(l-lysine) (PLL). The PnPrOx segment is dehydrated at 37 °C (>lower critical solution temperature) to enhance the hydrophobicity of uPICs. The uPICs with a hydrophobic domain facilitates cellular uptake of the siRNA payload through stronger binding to the cell surface, compared with control uPICs without a PnPrOx segment, leading to a significantly enhanced gene silencing effect in cultured cancer cells.


Assuntos
Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Polímeros/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Temperatura , Transporte Biológico , Inativação Gênica , Células HeLa , Humanos , RNA Interferente Pequeno/genética
10.
Biomacromolecules ; 21(10): 4365-4376, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32924444

RESUMO

For the simultaneous delivery of antisense oligonucleotides and their effector enzymes into cells, nanosized vesicular polyion complexes (PICs) were fabricated from oppositely charged polyion pairs of oligonucleotides and poly(ethylene glycol) (PEG)-b-polypeptides. First, the polyion component structures were carefully designed to facilitate a multimolecular (or secondary) association of unit PICs for noncovalent (or chemical cross-linking-free) stabilization of vesicular PICs. Chemically modified, single-stranded oligonucleotides (SSOs) dramatically stabilized the multimolecular associates under physiological conditions, compared to control SSOs without chemical modifications and duplex oligonucleotides. In addition, a high degree of guanidino groups in the polypeptide segment was also crucial for the high stability of multimolecular associates. Dynamic light scattering and transmission electron microscopy revealed the stabilized multimolecular associates to have a 100 nm sized vesicular architecture with a narrow size distribution. The loading number of SSOs per nanovesicle was determined to be ∼2500 using fluorescence correlation spectroscopic analyses with fluorescently labeled SSOs. Furthermore, the nanovesicle stably encapsulated ribonuclease H (RNase H) as an effector enzyme at ∼10 per nanovesicle through simple vortex-mixing with preformed nanovesicles. Ultimately, the RNase H-encapsulated nanovesicle efficiently delivered SSOs with RNase H into cultured cancer cells, thereby eliciting the significantly higher gene knockdown compared with empty nanovesicles (without RNase H) or a mixture of nanovesicles with RNase H without encapsulation. These results demonstrate the great potential of noncovalently stabilized nanovesicles for the codelivery of two varying bio-macromolecule payloads for ensuring their cooperative biological activity.


Assuntos
Oligonucleotídeos , Peptídeos , Técnicas de Silenciamento de Genes , Micelas , Oligonucleotídeos/genética , Polietilenoglicóis
11.
Angew Chem Int Ed Engl ; 59(21): 8173-8180, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31995252

RESUMO

Current antisense oligonucleotide (ASO) therapies for the treatment of central nervous system (CNS) disorders are performed through invasive administration, thereby placing a major burden on patients. To alleviate this burden, we herein report systemic ASO delivery to the brain by crossing the blood-brain barrier using glycemic control as an external trigger. Glucose-coated polymeric nanocarriers, which can be bound by glucose transporter-1 expressed on the brain capillary endothelial cells, are designed for stable encapsulation of ASOs, with a particle size of about 45 nm and an adequate glucose-ligand density. The optimized nanocarrier efficiently accumulates in the brain tissue 1 h after intravenous administration and exhibits significant knockdown of a target long non-coding RNA in various brain regions, including the cerebral cortex and hippocampus. These results demonstrate that the glucose-modified polymeric nanocarriers enable noninvasive ASO administration to the brain for the treatment of CNS disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glucose/química , Nanoestruturas/química , Oligonucleotídeos Antissenso/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Corantes Fluorescentes/química , Humanos , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Tamanho da Partícula , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
J Am Chem Soc ; 141(8): 3699-3709, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30729777

RESUMO

Vesicular polyion complexes (PICs) were fabricated through self-assembly of rigid cylindrical molecules, small interfering RNAs (siRNAs), with flexible block catiomers of poly(ethylene glycol) (2 kDa) and cationic polyaspartamide derivative (70 units) bearing a 5-aminopentyl side chain. 100 nm-sized siRNA-assembled vesicular PICs, termed siRNAsomes, were fabricated in specific mixing ranges between siRNA and block catiomer. The siRNAsome membrane was revealed to consist of PIC units fulfilling a simple molar ratio (1:2 or 2:3) of block catiomer and siRNA. These ratios correspond to the minimal integer molar ratio to maximally compensate the charge imbalance of PIC, because the numbers of charges per block catiomer and siRNA are +70 and -40, respectively. Accordingly, the ζ-potentials of siRNAsomes prepared at 1:2 and 2:3 were negative and positive, respectively. Cross-section transmission electron microscopic observation clarified that the membrane thicknesses of 1:2 and 2:3 siRNAsomes were 11.0 and 17.2 nm, respectively. Considering that a calculated long-axial length of siRNA is 5.9 nm, these thickness values correspond to the membrane models of two (11.8 nm) and three (17.7 nm) tandemly aligned siRNAs associating with one and two block catiomers, respectively. For biological application, siRNAsomes were stabilized through membrane-cross-linking with glutaraldehyde. The positively charged and cross-linked siRNAsome facilitated siRNA internalization into cultured cancer cells, eliciting significant gene silencing with negligible cytotoxicity. The siRNAsome stably encapsulated dextran as a model cargo macromolecule in the cavity by simple vortex mixing. Confocal laser scanning microscopic observation displayed that both of the payloads were internalized together into cultured cells. These results demonstrate the potential of siRNAsomes as a versatile platform for codelivery of siRNA with other cargo macromolecules.


Assuntos
Polietilenoglicóis/química , Interferência de RNA , RNA Interferente Pequeno/química , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Íons/síntese química , Íons/química , Substâncias Macromoleculares/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Sci Technol Adv Mater ; 20(1): 105-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787961

RESUMO

Degradability of polycations under physiological conditions is an attractive feature for their use in biomedical applications, such as the delivery of nucleic acids. This study aims to design polycations with tunable nonenzymatic degradability. A series of cationic N-substituted polyaspartamides were prepared to possess primary amine via various lengths of alkyl spacers in side chains. The degradation rate of each polyaspartamide derivative was determined by size exclusion chromatography under different pH conditions. The N-substituted polyaspartamide containing a 2-aminoethyl moiety in the side chain (PAsp(AE)) showed considerable degradability under physiological conditions (pH 7.4, 37 °C). In contrast, the N-substituted polyaspartamides bearing a longer alkyl spacer in the side chain, i.e. the 3-aminopropyl (PAsp(AP)) and 4-aminobutyl moieties (PAsp(AB)), more strongly suppressed degradation. Further, a positive correlation was observed between the degradation rate of N-substituted polyaspartamides and a deprotonation degree of primary amines in their side chains. Therefore, we conclude that the deprotonated primary amine in the side chain of N-substituted polyaspartamides can induce the degradation of the main chain through the activation of amide nitrogen in the side chain. When N-substituted polyaspartamides were utilized as a messenger RNA (mRNA) delivery vehicle via formation of polyion complexes (PICs), degradable PAsp(AE) elicited significantly higher mRNA expression efficiency in cultured cells compared to PAsp(AP) and PAsp(AB). The higher efficiency of PAsp(AE) might be due to the facilitated destabilization of PICs within the cells, directed toward mRNA release. Additionally, degradation of PAsp(AE) considerably reduced its cytotoxicity. Thus, our study highlights a useful design of well-defined cationic poly(amino acid)s with tunable nonenzymatic degradability.

14.
Angew Chem Int Ed Engl ; 58(33): 11360-11363, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187576

RESUMO

Ribonuclease (RNase)-mediated degradation of messenger RNA (mRNA) poses a huge obstruction to in vivo mRNA delivery. Herein, we propose a novel strategy to protect mRNA by structuring mRNA to prevent RNase attack through steric hinderance. Bundling of mRNA strands through hybridization of RNA oligonucleotide linkers allowed the preparation of mRNA nano-assemblies (R-NAs) comprised of 7.7 mRNA strands on average, mostly below 100 nm in diameter. R-NA formation boosted RNase stability by around 100-fold compared to naïve mRNA and preserved translational activity, allowing protein production. A mechanistic analysis suggests that an endogenous mRNA unwinding mechanism triggered by 5'-cap-dependent translation may induce selective R-NA dissociation intracellularly, leading to smooth translation. R-NAs showed efficient mRNA transfection in mouse brain, demonstrating the feasibility for in vivo administration.


Assuntos
Nanoestruturas/química , RNA Mensageiro/química , Ribonucleases/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , Ribonucleases/química
15.
Biomacromolecules ; 19(6): 2320-2329, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29767505

RESUMO

Antibody fragment (Fab')-installed polyion complex (PIC) micelles were constructed to improve targetability of small interfering RNA (siRNA) delivery to pancreatic cancer cells. To this end, we synthesized a block copolymer of azide-functionalized poly(ethylene glycol) and poly(l-lysine) and prepared PIC micelles with siRNA. Then, a dibenzylcyclooctyne (DBCO)-modified antihuman tissue factor (TF) Fab' was conjugated to azido groups on the micellar surface. A fluorescence correlation spectroscopic analysis revealed that 1, 2, or 3 molecule(s) of Fab'(s) were installed onto one micellar nanoparticle according to the feeding ratio of Fab' (or DBCO) to micelle (or azide). The resulting micelles exhibited ∼40 nm in hydrodynamic diameter, similar to that of the parent micelles before Fab' conjugation. Flow cytometric analysis showed that three molecules of Fab'-installed PIC micelles (3(Fab')-micelles) had the highest binding affinity to cultured pancreatic cancer BxPC3 cells, which are known to overexpress TF on their surface. The 3(Fab')-micelles also exhibited the most efficient gene silencing activity against polo-like kinase 1 mRNA in the cultured cancer cells. Furthermore, the 3(Fab')-micelles exhibited high penetrability and the highest cellular internalization amounts in BxPC3 spheroids compared with one or two molecule(s) of Fab'-installed PIC micelles. These results demonstrate the potential of anti-TF Fab'-installed PIC micelles for active targeting of stroma-rich pancreatic tumors.


Assuntos
Anticorpos Antineoplásicos , Proteínas de Ciclo Celular/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Inativação Gênica , Fragmentos Fab das Imunoglobulinas , Micelas , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , RNA Interferente Pequeno , Tromboplastina/antagonistas & inibidores , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polilisina/química , Polilisina/farmacologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Tromboplastina/metabolismo , Quinase 1 Polo-Like
16.
Angew Chem Int Ed Engl ; 57(18): 5057-5061, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29512262

RESUMO

Polyzwitterions are employed as coating polymers for biomaterials to induce an antifouling property on the surface. Fine-tuning the betaine structure switches the antifouling property to be interactive with anionic tissue constituents in response to a tumorous pH gradient. The ethylenediamine moiety in the carboxybetaine enabled stepwise protonation and initiated the di-protonation process around tumorous pH (6.5). The net charge of the developed polyzwitterion (PGlu(DET-Car)) was thus neutral at pH 7.4 for antifouling, but was cationic at pH 6.5 for interaction with anionic constituents. Quantum dots coated with PGlu(DET-Car) exhibited comparable stealth and enhanced tumor accumulation relative to the PEG system. The present study provides a novel design of smart switchable polyzwitterion based on a precise control of the net charge.


Assuntos
Etilenodiaminas/química , Nanoestruturas/química , Neoplasias/química , Polímeros/química , Cátions/química , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Pontos Quânticos/química , Propriedades de Superfície
17.
J Am Chem Soc ; 139(51): 18567-18575, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29188718

RESUMO

Polyplexes as gene delivery carriers require integrated functionalities to modulate intracellular trafficking for efficient gene transfection. Herein, we developed plasmid DNA (pDNA)-loaded polyplex micelles (PMs) from poly(ethylene glycol)-based block catiomers derivatized with 4-carboxy-3-fluorophenylboronic acid (FPBA) and d-gluconamide to form pH- and ATP-responsive cross-linking in the core. These PMs exhibited robustness in the extracellular milieu and smooth endosomal escape after cellular uptake, and they facilitated pDNA decondensation triggered by increased ATP concentration inside of the cell. Laser confocal microscopic observation revealed that FPBA installation enhanced the endosomal escapability of the PMs; presumably, this effect resulted from the facilitated endo-/lysosomal membrane disruption triggered by the released block catiomers with hydrophobic FPBA moieties in the side chain from the PM at lower pH condition of endo-/lysosomes. Furthermore, the profile of intracellular pDNA decondensation from the PMs was monitored using Förster resonance energy transfer measurement by flow cytometry; these observations confirmed that PMs optimized for ATP-responsivity exerted effective intracellular decondensation of loaded pDNA to attain promoted gene transfection.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Borônicos/química , Reagentes de Ligações Cruzadas/química , Gluconatos/química , Micelas , Transfecção/métodos , Linhagem Celular , DNA/genética , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lisossomos/metabolismo , Plasmídeos/genética , Polietilenoglicóis/química
18.
Biomacromolecules ; 17(1): 246-55, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26616636

RESUMO

Small interfering RNA (siRNA) needs an efficient delivery vehicle to reach the cytoplasm of target cells for successful RNA interference (RNAi) therapy. This study aimed to develop an siRNA-loaded polyion complex (PIC) micelle equipped with a smart polymeric shell featuring tumor targetability and endosome escapability for enhanced RNAi activity in cancer cells. To this end, an acidic pH-responsive polypeptide was designed to exert a stepwise change in its charged state from negative to modestly positive and highly positive in response to slightly acidic environment of tumor (pH ∼6.7) and further lowered-pH condition of late endosomal compartments (pH ∼5.0), respectively, for selective binding to cancer cell surface and subsequent endosome disruption. This polypeptide, termed PAsp(DET-CDM/DBCO), was synthesized by introducing acid-labile carboxydimethyl maleate (CDM) and dibenzylcyclooctyne (DBCO) moieties into a polyaspartamide derivative bearing two-repeated aminoethylene side chains (PAsp(DET)). Then, PAsp(DET-CDM/DBCO) was installed on the surface of disulfide cross-linked PIC micelles prepared from cholesterol-modified siRNA (Chol-siRNA) and azide-poly(ethylene glycol)-b-poly[(3-mercaptopropylamidine)-L-lysine] (N3-PEG-b-PLys(MPA)) through the copper-free click reaction. Successful PAsp(DET-CDM/DBCO) coverage of PIC micelles was confirmed by a significant decrease in ζ-potential as well as a narrowly distributed size of 40 nm. The PAsp(DET-CDM/DBCO)-installed micelles significantly improved the gene-silencing efficiency in cultured lung cancer cells, compared with nonmodified control micelles, especially after incubation at pH 6.7. This improved silencing activity was nicely correlated with the facilitated cellular uptake of siRNA payloads at the acidic pH and the efficient endosomal escape. These results demonstrate that the acidic pH-responsive polypeptide shell is a promising design strategy for tumor-targeted siRNA delivery.


Assuntos
Terapia Genética/métodos , Neoplasias Pulmonares/terapia , Micelas , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção/métodos , Transporte Biológico , Linhagem Celular Tumoral , Química Click/métodos , Endocitose/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Peptídeos/síntese química , Peptídeos/química , Polímeros/química , Interferência de RNA , RNA Interferente Pequeno/genética
19.
Macromol Biosci ; 24(4): e2300366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226723

RESUMO

Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.


Assuntos
Ácidos Nucleicos , Polieletrólitos , Endossomos , Polímeros/química
20.
Sci Rep ; 13(1): 8791, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258599

RESUMO

Liquid-liquid phase separation (LLPS), an important phenomenon in the field of polymer science and material design, plays an essential role in cells and living bodies. Poly(vinyl alcohol) (PVA) is a popular semicrystalline polymer utilized in the synthesis of artificial biomaterials. The aqueous solutions of its derivatives with tuned degrees of saponification (DS) exhibit LLPS. However, the miscibility and LLPS behavior of PVA aqueous solution are still unclear. This study describes the miscibility diagram of the ternary mixture, where water and two types of poly(vinyl alcohol) (PVA) with different DSs [98 (PVA98), 88 (PVA88), 82 (PVA82), and 74 mol% (PVA74)] were blended. UV-Vis measurement was conducted to evaluate the miscibility. Immiscibility was more pronounced at elevated temperatures, exhibiting LLPS. The ternary immiscibility diagram, displaying miscible-immiscible behaviors in the aqueous mixtures of PVA74:PVA98, PVA82:PVA98, and PVA88:PVA98 (blended at a constant volume ratio), indicated that increasing the concentration, temperature, and blend ratio of PVAs at a lower DS increased immiscibility, suggesting that the free energy of mixing increases with increasing these parameters. The miscible-immiscible behaviors of PVAs/water systems provide fundamental knowledge about LLPS and the design of PVA-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA