Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254604

RESUMO

In this study, we explore the selective synthesis of iron silyl complexes using the reaction of an iron mesityl complex (MesCCC)FeMes(Py) with various hydrosilanes. These resulting iron silyl complexes, (MesCCC)Fe(SiH2Ph)(Py)(N2), (MesCCC)Fe(SiMe2Ph)(Py)(N2), and (MesCCC)Fe[SiMe(OSiMe3)2](Py)(N2), serve as effective precatalysts for olefin hydrogenation. The key to their efficiency in catalysis lies in the specific nature of the silyl ligand attached to the iron center. Experimental observations, supported by density functional theory (DFT) simulations, reveal that the catalytic performance correlates with the relative stability of dihydrogen and hydride species associated with each iron silyl complex. The stability of these intermediates is crucial for efficient hydrogen transfer during the catalytic cycle. The DFT simulations help to quantify these stability factors, showing a direct relationship between the silyl ligand's electronic and steric properties and the overall catalytic activity. Complexes with certain silyl ligands exhibit better performance due to the optimal balance between the stability and reactivity of the key active catalyst. This work highlights the importance of ligand design in the development of iron-based hydrogenation catalysts.

2.
J Am Chem Soc ; 145(38): 21086-21095, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698953

RESUMO

Parahydrogen induced polarization (PHIP) can address the low sensitivity problem intrinsic to nuclear magnetic resonance spectroscopy. Using a catalyst capable of reacting with parahydrogen and substrate in either a hydrogenative or nonhydrogenative manner can result in signal enhancement of the substrate. This work describes the development of a rare example of an iron catalyst capable of reacting with parahydrogen to hyperpolarize olefins. Complexes of the form (MesCCC)Fe(H)(L)(N2) (L = Py (Py = pyridine), PMe3, PPh3) were synthesized from the reaction of the parent complexes (MesCCC)FeMes(L) (Mes = mesityl) with H2. The isolated low-spin iron(II) hydride compounds were characterized via multinuclear NMR spectroscopy, infrared spectroscopy, and single crystal X-ray diffraction. (MesCCC)Fe(H)(Py)(N2) is competent in the hydrogenation of olefins and demonstrated high activity toward the hydrogenation of monosubstituted terminal olefins. Reactions with p-H2 resulted in the first PHIP effect mediated by iron which requires diamagnetism throughout the reaction sequence. This work represents the development of a new PHIP catalyst featuring iron, unlocking potential to develop more PHIP catalysts based on first-row transition metals.

3.
Organometallics ; 42(9): 832-837, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38357387

RESUMO

The metalation of the DIPPCCC (DIPPCCC = bis(diisopropylphenyl-imidazol-2-ylidene)phenyl) ligand platform with Pd was achieved under mild conditions by reacting [H3(DIPPCCC)]Cl2 with Pd(OAc)2 at room temperature in the presence of 3.1 equiv of LiN(SiMe3)2. The resulting complexes (DIPPCCC)PdX (X = Cl or Br) were oxidized by two-electron oxidants PhICl2, Br2, and BTMABr3. All the complexes were crystallographically characterized, and analysis of structural parameters around the ligand scaffold show no evidence of a ligand-centered radical, rendering the metal center in the oxidized species, (DIPPCCC)PdX3 (X = Cl or Br), a formal PdIV oxidation state. Unlike their NiIV analogues, these PdIV complexes are stable to air and moisture. The addition of styrene to (DIPPCCC)PdBr3 resulted in the clean reduction of PdIV to PdII, along with the formation of the halogenated alkane. The oxidation to PdIV and subsequent return to PdII upon reduction, as opposed to formation of PdIII species, showcases the accessibility of high-valent palladium DIPPCCC complexes.

4.
Chem Commun (Camb) ; 58(69): 9626-9629, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35959650

RESUMO

Agostic interactions were observed in the bound mesityl group in a series of iron compounds bearing a bis(NHC) pincer CCC ligand. The L-type ligand on [(CCC)FeIIMes(L)] complexes influences the strength of the agostic interaction and is manifested in the upfield shift of the 1H NMR resonance for the mesityl methyl resonances. The nature of the interaction was further investigated by density functional theory calculations, allowing rationalization of some unexpected trends and proving to be a powerful predictive tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA