Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Immunol ; 16(10): 1077-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322481

RESUMO

The molecular mechanisms by which signaling via transforming growth factor-ß (TGF-ß) and interleukin 4 (IL-4) control the differentiation of CD4(+) IL-9-producing helper T cells (TH9 cells) remain incompletely understood. We found here that the DNA-binding inhibitor Id3 regulated TH9 differentiation, as deletion of Id3 increased IL-9 production from CD4(+) T cells. Mechanistically, TGF-ß1 and IL-4 downregulated Id3 expression, and this process required the kinase TAK1. A reduction in Id3 expression enhanced binding of the transcription factors E2A and GATA-3 to the Il9 promoter region, which promoted Il9 transcription. Notably, Id3-mediated control of TH9 differentiation regulated anti-tumor immunity in an experimental melanoma-bearing model in vivo and also in human CD4(+) T cells in vitro. Thus, our study reveals a previously unrecognized TAK1-Id3-E2A-GATA-3 pathway that regulates TH9 differentiation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas Inibidoras de Diferenciação/imunologia , Interleucina-9/biossíntese , Proteínas de Neoplasias/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Proteínas Inibidoras de Diferenciação/genética , Interleucina-9/imunologia , Camundongos , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase , Transdução de Sinais/imunologia
2.
J Immunol ; 212(11): 1627-1638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639586

RESUMO

Attempts have been made to elucidate the functional markers of regulatory T cells (Tregs), CD4+Foxp3+ T cells with an immunosuppressive function. Sialyl Lewis X (sLex), a tetrasaccharide Ag, is involved in leukocyte trafficking as selectin ligands and is a marker of highly differentiated Tregs in humans. However, the importance of sLex in murine Tregs remains unknown. In this study, we report that sLex defines the activated and functional subset of murine Tregs. The contact hypersensitivity model showed that murine Tregs strongly express sLex upon activation, accompanied by functional Treg marker elevation, such as Foxp3, CD25, CD103, CD39, and granzyme B. RNA sequencing analysis revealed sLex-positive (sLex+) Tregs expressed genes involved in Treg function at a higher level than sLex-negative (sLex-) Tregs. Using an in vitro suppression assay, we found that sLex+ Tregs could more efficiently suppress naive CD4+ T cell proliferation than sLex- Tregs. In the murine contact hypersensitivity elicitation model, the topical sLex+ Treg injection into the ears suppressed ear inflammation more efficiently than that of sLex- Tregs. Our results indicate that sLex could serve as a unique surface marker of activated and functional Tregs with immunosuppressive functions in mice.


Assuntos
Ativação Linfocitária , Antígeno Sialil Lewis X , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Antígeno Sialil Lewis X/análogos & derivados , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Dermatite de Contato/imunologia , Feminino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
3.
Int Immunol ; 36(6): 303-316, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38387051

RESUMO

Lymphocyte homing to peripheral lymph nodes (PLN) is critical for immune surveillance. However, autoimmune diseases such as multiple sclerosis (MS) can occur due to excessive immune responses in the PLN. Here we show that 6-sulfo sialyl Lewis X (6-sulfo sLex) glycans on high endothelial venules that function as ligands for l-selectin on lymphocytes play a critical role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST)-1 and GlcNAc6ST-2 double-knockout mice lacking the expression of 6-sulfo sLeX glycans, the EAE symptoms and the numbers of effector Th1 and Th17 cells in the draining lymph nodes (dLN) and spinal cords (SC) were significantly reduced. To determine whether 6-sulfo sLeX could serve as a target for MS, we also examined the effects of anti-glycan monoclonal antibody (mAb) SF1 against 6-sulfo sLeX in EAE. Administration of mAb SF1 significantly reduced EAE symptoms and the numbers of antigen-specific effector T cells in the dLN and SC in association with suppression of critical genes including Il17a and Il17f that are involved in the pathogenesis of EAE. Taken together, these results suggest that 6-sulfo sLeX glycan would serve as a novel target for MS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígeno Sialil Lewis X , Antígeno Sialil Lewis X/análogos & derivados , Células Th17 , Animais , Encefalomielite Autoimune Experimental/imunologia , Camundongos , Células Th17/imunologia , Antígeno Sialil Lewis X/metabolismo , Polissacarídeos/metabolismo , Interleucina-17/metabolismo , Interleucina-17/imunologia , Oligossacarídeos , Carboidrato Sulfotransferases , Células Th1/imunologia , Sulfotransferases/metabolismo , Sulfotransferases/genética , Sulfotransferases/imunologia , Linfonodos/imunologia , Linfonodos/metabolismo , Feminino , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo , Movimento Celular/imunologia
4.
Nature ; 565(7738): 246-250, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602786

RESUMO

In addition to maintaining immune tolerance, FOXP3+ regulatory T (Treg) cells perform specialized functions in tissue homeostasis and remodelling1,2. However, the characteristics and functions of brain Treg cells are not well understood because there is a low number of Treg cells in the brain under normal conditions. Here we show that there is massive accumulation of Treg cells in the mouse brain after ischaemic stroke, and this potentiates neurological recovery during the chronic phase of ischaemic brain injury. Although brain Treg cells are similar to Treg cells in other tissues such as visceral adipose tissue and muscle3-5, they are apparently distinct and express unique genes related to the nervous system including Htr7, which encodes the serotonin receptor 5-HT7. The amplification of brain Treg cells is dependent on interleukin (IL)-2, IL-33, serotonin and T cell receptor recognition, and infiltration into the brain is driven by the chemokines CCL1 and CCL20. Brain Treg cells suppress neurotoxic astrogliosis by producing amphiregulin, a low-affinity epidermal growth factor receptor (EGFR) ligand. Stroke is a leading cause of neurological disability, and there are currently few effective recovery methods other than rehabilitation during the chronic phase. Our findings suggest that Treg cells and their products may provide therapeutic opportunities for neuronal protection against stroke and neuroinflammatory diseases.


Assuntos
Astrócitos/patologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Gliose/patologia , Neuroproteção/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Animais , Encéfalo/citologia , Encéfalo/imunologia , Movimento Celular , Proliferação de Células , Quimiocina CCL1/imunologia , Quimiocina CCL20/imunologia , Interleucina-2/imunologia , Interleucina-33/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CCR/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Fator de Transcrição STAT3/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
5.
J Immunol ; 209(1): 57-68, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35725273

RESUMO

TCR ligation with an Ag presented on MHC molecules promotes T cell activation, leading to the selection, differentiation, and proliferation of T cells and cytokine production. These immunological events are optimally arranged to provide appropriate responses against a variety of pathogens. We here propose signal-transducing adaptor protein-2 (STAP-2) as a new positive regulator of TCR signaling. STAP-2-deficient T cells showed reduced, whereas STAP-2-overexpressing T cells showed enhanced, TCR-mediated signaling and downstream IL-2 production. For the mechanisms, STAP-2 associated with TCR-proximal CD3ζ immunoreceptor tyrosine activation motifs and phosphorylated LCK, resulting in enhancement of their binding after TCR stimulation. In parallel, STAP-2 expression is required for full activation of downstream TCR signaling. Importantly, STAP-2-deficient mice exhibited slight phenotypes of CD4+ T-cell-mediated inflammatory diseases, such as experimental autoimmune encephalomyelitis, whereas STAP-2-overexpressing transgenic mice showed severe phenotypes of these diseases. Together, STAP-2 is an adaptor protein to enhance TCR signaling; therefore, manipulating STAP-2 will have an ability to improve the treatment of patients with autoimmune diseases as well as the chimeric Ag receptor T cell therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Animais , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T
6.
Int Immunol ; 31(5): 335-347, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30726915

RESUMO

Ten-eleven translocation (TET) proteins regulate DNA methylation and gene expression by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Although Tet2/Tet3 deficiency has been reported to lead to myeloid cell, B-cell and invariant natural killer T (iNKT) cell malignancy, the effect of TET on regulatory T cells (Tregs) has not been elucidated. We found that Tet2/Tet3 deficiency in Tregs led to lethal hyperproliferation of CD4+Foxp3+ T cells in the spleen and mesenteric lymph nodes after 5 months of age. Additionally, in aged Treg-specific Tet2/Tet3-deficient mice, serum IgG1, IgG3, IgM and IgE levels were markedly elevated. High IL-17 expression was observed in both Foxp3+ and Fopx3- CD4+ T cells, and adoptive transfer of Tet2/Tet3-deficient Tregs into lymphopenic mice inhibited Foxp3 expression and caused conversion into IL-17-producing cells. However, the conserved non-coding DNA sequence-2 (CNS2) region of the Foxp3 gene locus, which has been shown to be particularly important for stable Foxp3 expression, was only partly methylated. We identified novel TET-dependent demethylation sites in the Foxp3 upstream enhancer, which may contribute to stable Foxp3 expression. Together, these data indicate that Tet2 and Tet3 are involved in Treg stability and immune homeostasis in mice.


Assuntos
Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Fatores de Transcrição Forkhead/metabolismo , Interleucina-17/biossíntese , Proteínas Proto-Oncogênicas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Animais , Proliferação de Células , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Nature ; 507(7493): 513-8, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24463518

RESUMO

In immune responses, activated T cells migrate to B-cell follicles and develop into follicular T-helper (TFH) cells, a recently identified subset of CD4(+) T cells specialized in providing help to B lymphocytes in the induction of germinal centres. Although Bcl6 has been shown to be essential in TFH-cell function, it may not regulate the initial migration of T cells or the induction of the TFH program, as exemplified by C-X-C chemokine receptor type 5 (CXCR5) upregulation. Here we show that expression of achaete-scute homologue 2 (Ascl2)--a basic helix-loop-helix (bHLH) transcription factor--is selectively upregulated in TFH cells. Ectopic expression of Ascl2 upregulates CXCR5 but not Bcl6, and downregulates C-C chemokine receptor 7 (CCR7) expression in T cells in vitro, as well as accelerating T-cell migration to the follicles and TFH-cell development in vivo in mice. Genome-wide analysis indicates that Ascl2 directly regulates TFH-related genes whereas it inhibits expression of T-helper cell 1 (TH1) and TH17 signature genes. Acute deletion of Ascl2, as well as blockade of its function with the Id3 protein in CD4(+) T cells, results in impaired TFH-cell development and germinal centre response. Conversely, mutation of Id3, known to cause antibody-mediated autoimmunity, greatly enhances TFH-cell generation. Thus, Ascl2 directly initiates TFH-cell development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Centro Germinativo/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Centro Germinativo/imunologia , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Mutação/genética , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores CCR7/metabolismo , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo , Transcrição Gênica/genética , Regulação para Cima
8.
Int Immunol ; 30(8): 357-373, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29982622

RESUMO

T helper type 1 (Th1) cells form one of the most stable CD4 T-cell subsets, and direct conversion of fully differentiated Th1 to regulatory T (Treg) cells has been poorly investigated. Here, we established a culture method for inducing Foxp3 from Th1 cells of mice and humans. This is achieved simply by resting Th1 cells without T-cell receptor ligation before stimulation in the presence of transforming growth factor-beta (TGF-ß). We named the resulting Th1-derived Foxp3+ cells Th1reg cells. Mouse Th1reg cells showed an inducible Treg-like phenotype and suppressive ability both in vitro and in vivo. Th1reg cells could also be induced from in vivo-developed mouse Th1 cells. Unexpectedly, the resting process enabled Foxp3 expression not through epigenetic changes at the locus, but through metabolic change resulting from reduced mammalian target of rapamycin complex 1 (mTORC1) activity. mTORC1 suppressed TGF-ß-induced phosphorylation of Smad2/3 in Th1 cells, which was restored in rested cells. Our study warrants future research aiming at development of immunotherapy with Th1reg cells.


Assuntos
Reprogramação Celular , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Células Th1/citologia , Células Th1/metabolismo , Adulto , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
9.
Trends Immunol ; 37(11): 803-811, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27623114

RESUMO

Regulatory T (Treg) cells, as central mediators of immune suppression, play crucial roles in many facets of immune systems. The transcription factor Foxp3 has been characterized as a master regulator of Tregs, and is induced during their thymic development. Foxp3+ Tregs can also be generated from naïve T cells after stimulation in the presence of TGF-ß and IL-2; the resulting cells are called induced Tregs (iTregs) when generated in vitro, or peripheral Tregs (pTregs) when generated in vivo. Compared to tTregs, iTregs have been shown to be unstable, and attempts to generate stable iTregs have been made for clinical applications. We review here the current knowledge on the development of pTregs, iTregs, and their roles and applications.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Imunoterapia Adotiva/métodos , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Metilação de DNA , Fatores de Transcrição Forkhead/genética , Humanos , Interleucina-2/metabolismo , Ativação Linfocitária , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismo
10.
J Immunol ; 199(1): 149-158, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28550203

RESUMO

We previously showed that regulatory T cells (Tregs) from T cell-specific Socs1-deficient mice (Socs1fl/flLck-Cre+ mice) easily convert into Th1- or Th17-like cells (ex-Tregs), which lose Foxp3 expression and suppressive functions in vivo. Because Tregs in Socs1fl/flLck-Cre+ mice are constantly exposed to a large amount of inflammatory cytokines produced by non-Tregs in vivo, in this study we analyzed Treg-specific Socs1-deficient mice (Socs1fl/flFoxp3YFP-Cre mice). These mice developed dermatitis, splenomegaly, and lymphadenopathy that were much milder than those in Socs1fl/flLck-Cre+ mice. A fate mapping study revealed that Socs1 deficiency accelerated the conversion of Tregs to Foxp3-IFN-γ+ ex-Tregs in the tumor microenvironment and suppressed tumor growth. When transferred into Rag2-/- mice, Tregs from Socs1fl/flLck-Cre+ mice easily lost Foxp3 expression, whereas those from Socs1fl/flFoxp3YFP-Cre mice maintained Foxp3 expression. Although Tregs from Socs1fl/flLck-Cre+ mice produced IFN-γ after a 3-d culture in response to anti-CD3/CD28 Ab stimulation in vitro, Tregs from Socs1fl/flFoxp3YFP-Cre mice did not. This finding suggested that the inflammatory conditions in Socs1fl/flLck-Cre+ mice modified the born nature of Socs1-deficient Tregs. To investigate this mechanism, Tregs from Socs1fl/flFoxp3YFP-Cre mice were cultured with APCs from Socs1fl/flLck-Cre+ mice. These APCs facilitated STAT4 phosphorylation, IFN-γ production, and loss of Foxp3 expression in Tregs from Socs1fl/flFoxp3YFP-Cre mice in an IL-12-dependent manner. The results indicate that Socs1-deficient Tregs tend to convert into ex-Tregs under the inflammatory conditions in which APCs are highly activated, and that SOCS1 could be a useful target for enhancement of anti-tumor immunity.


Assuntos
Plasticidade Celular , Inflamação/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Citocinas/imunologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Interferon gama/biossíntese , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Esplenomegalia/imunologia , Proteína 1 Supressora da Sinalização de Citocina/deficiência , Linfócitos T Reguladores/fisiologia
11.
Int Immunol ; 29(8): 365-375, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048538

RESUMO

Since induced regulatory T cells (iTregs) can be produced in a large quantity in vitro, these cells are expected to be clinically useful to induce immunological tolerance in various immunological diseases. Foxp3 (Forkhead box P3) expression in iTregs is, however, unstable due to the lack of demethylation of the CpG island in the conserved non-coding sequence 2 (CNS2) of the Foxp3 locus. To facilitate the demethylation of CNS2, we over-expressed the catalytic domain (CD) of the ten-eleven translocation (TET) protein, which catalyzes the steps of the iterative demethylation of 5-methylcytosine. TET-CD over-expression in iTregs resulted in partial demethylation of CNS2 and stable Foxp3 expression. We also discovered that TET expression was enhanced under low oxygen (5%) culture conditions, which facilitated CNS2 DNA demethylation and stabilization of Foxp3 expression in a TET2- and TET3-dependent manner. In combination with vitamin C treatment, which has been reported to enhance TET catalytic activity, iTregs generated under low oxygen conditions retained more stable Foxp3 expression in vitro and in vivo and exhibited stronger suppression activity in a colitis model compared with untreated iTregs. Our data indicate that the induction and activation of TET enzymes in iTregs would be an effective method for Treg-mediated adoptive immunotherapy.


Assuntos
Colite/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Imunoterapia Adotiva/métodos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Ácido Ascórbico/administração & dosagem , Colite/induzido quimicamente , Sequência Conservada , Ilhas de CpG/genética , Desmetilação , Dioxigenases , Indução Enzimática , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Hipóxia , Camundongos , Subpopulações de Linfócitos T/transplante , Linfócitos T Reguladores/transplante
12.
Int Immunol ; 29(10): 457-469, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29126272

RESUMO

Antigen-specific regulatory T cells (Tregs) possess the potential to reduce excess immune responses in autoimmune diseases, allergy, rejection after organ transplantation and graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation. Although in vitro-expanded antigen-specific induced Tregs (iTregs) have been considered to be a promising therapeutic agent against such excessive immune reactions, the instability of iTregs after transfer is a fundamental problem in their clinical application. In this study, we searched for the optimal way to generate stable iTregs for the prevention of the murine GVHD model, in which conventional iTregs are reported to be inefficient. Allo-antigen-specific iTregs were generated by co-culturing naive T cells with allogenic dendritic cells in the presence of TGF-ß and retinoic acid. By examining various agents and genes, we found that vitamin C stabilized Foxp3 expression most effectively in adoptively transferred iTregs under a GVHD environment. Vitamin C treatment caused active DNA demethylation specifically on the conserved non-coding sequence 2 (CNS2) enhancer of the Foxp3 gene locus in allo-antigen-specific iTregs and reduced iTreg conversion into pathogenic exFoxp3 cells. Vitamin C-treated iTregs suppressed GVHD symptoms more efficiently than untreated iTregs. Vitamin C also facilitated induction of a FOXP3high iTreg population from human naive T cells, which was very stable even in the presence of IL-6 in vitro. The treatment of vitamin C for iTreg promises innovative clinical application for adoptive Treg immunotherapy.


Assuntos
Ácido Ascórbico/farmacologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Isoantígenos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Humanos , Imunoterapia Adotiva , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Tretinoína/farmacologia
13.
J Autoimmun ; 83: 113-121, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28709726

RESUMO

Regulatory T cells (Tregs) are an essential cell subset for the maintenance of immune homeostasis. Foxp3 (Forkhead box P3) is the Treg master gene which is essential for immune suppressing activity. In addition, Tregs are characterized by a distinct pattern of gene expression, including upregulation of immune-suppressive genes and silencing of inflammatory genes. The molecular mechanisms of Treg development and maintenance have been intensively investigated. Tregs are characterized by expression of the transcription factor Foxp3. Several intronic enhancers and a promoter at the Foxp3 gene locus were shown to play important roles in Treg differentiation. The enhancers have been designated as conserved non-coding sequences (CNSs) 0, 1, 2, and 3. We showed that the transcription factors Nr4a and Smad2/3 are essential for the development of thymic Tregs and induced Tregs, respectively. Recently, Treg-specific DNA demethylation has been shown to play an important role in Treg stability. DNA demethylation of CNS2 has been implicated in Treg stability, and recent reports have revealed that the ten-eleven translocation (Tet) family of demethylation factor plays an important role in CpG demethylation at CNS2. This article reviews the recent progress on the roles of transcription factors and epigenetic modifications in the differentiation, maintenance, and function of Tregs.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Timo/fisiologia , Animais , Metilação de DNA , Humanos , Tolerância Imunológica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteína Smad2/genética
14.
Blood ; 122(13): 2224-32, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23940283

RESUMO

Transforming growth factor-ß (TGF-ß) receptors (TßRs) are essential components for TGF-ß signal transduction in T cells, yet the mechanisms by which the receptors are regulated remain poorly understood. We show here that Poly(ADP-ribose) polymerase-1 (PARP-1) regulates TGF-ß receptor I (TßRI) and II (TßRII) expression in CD4(+) T cells and subsequently affects Smad2/3-mediated TGF-ß signal transduction. Inhibition of PARP-1 led to the upregulation of both TßRI and TßRII, yet the underlying molecular mechanisms were distinct. PARP-1 selectively bound to the promoter of TßRII, whereas the enzymatic activity of PARP-1 was responsible for the inhibition of TßRI expression. Importantly, inhibition of PARP-1 also enhanced expression of TßRs in human CD4(+) T cells. Thus, PARP-1 regulates TßR expression and TGF-ß signaling in T cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Transdução de Sinais/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/imunologia , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
15.
Cell Death Discov ; 10(1): 218, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704362

RESUMO

The incidence of autoimmune diseases has significantly increased over the past 20 years. Excessive host immunoreactions and disordered immunoregulation are at the core of the pathogenesis of autoimmune diseases. The traditional anti-tumor chemotherapy drug CPT-11 is associated with leukopenia. Considering that CPT-11 induces leukopenia, we believe that it is a promising drug for the control of autoimmune diseases. Here, we show that CPT-11 suppresses T cell proliferation and pro-inflammatory cytokine production in healthy C57BL/6 mice and in complete Freund's adjuvant-challenged mice. We found that CPT-11 effectively inhibited T cell proliferation and Th1 and Th17 cell differentiation by inhibiting glycolysis in T cells. We also assessed CPT-11 efficacy in treating autoimmune diseases in models of experimental autoimmune encephalomyelitis and psoriasis. Finally, we proved that treatment of autoimmune diseases with CPT-11 did not suppress long-term immune surveillance for cancer. Taken together, these results show that CPT-11 is a promising immunosuppressive drug for autoimmune disease treatment.

16.
Nat Commun ; 13(1): 6069, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241625

RESUMO

Interleukin-9 (IL-9)-producing CD4+ T helper cells (Th9) have been implicated in allergy/asthma and anti-tumor immunity, yet molecular insights on their differentiation from activated T cells, driven by IL-4 and transforming growth factor-beta (TGF-ß), is still lacking. Here we show opposing functions of two transcription factors, D-binding protein (DBP) and E2F8, in controlling Th9 differentiation. Specifically, TGF-ß and IL-4 signaling induces phosphorylation of the serine 213 site in the linker region of the Smad3 (pSmad3L-Ser213) via phosphorylated p38, which is necessary and sufficient for Il9 gene transcription. We identify DBP and E2F8 as an activator and repressor, respectively, for Il9 transcription by pSmad3L-Ser213. Notably, Th9 cells with siRNA-mediated knockdown for Dbp or E2f8 promote and suppress tumor growth, respectively, in mouse tumor models. Importantly, DBP and E2F8 also exhibit opposing functions in regulating human TH9 differentiation in vitro. Thus, our data uncover a molecular mechanism of Smad3 linker region-mediated, opposing functions of DBP and E2F8 in Th9 differentiation.


Assuntos
Interleucina-4 , Interleucina-9 , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Interleucina-4/metabolismo , Proteínas Repressoras/genética , RNA Interferente Pequeno/metabolismo , Serina/metabolismo , Linfócitos T Auxiliares-Indutores , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
17.
Biochem Biophys Res Commun ; 409(1): 114-9, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21557932

RESUMO

Extracellular adenosine activates P1 receptors (A(1), A(2A), A(2B), A(3)) on cellular membranes. Here, we investigated the involvement of P1 receptor-mediated signaling in differentiation to regulatory T cells (Treg). Treg were induced in vitro by incubating isolated CD4(+)CD62L(+) naïve murine T cells under Treg-skewing conditions. Antagonists of A(1) and A(2B) receptors suppressed the expression of Foxp3, a specific marker of Treg, and the production of IL-10, suggesting the involvement of A(1) and A(2B) receptors in differentiation to Treg. We also investigated the effect of these antagonists on T cell activation, which is essential for differentiation to Treg, and found that A(1) antagonist, but not A(2B) antagonist, suppressed T cell activation. We conclude that A(1) and A(2B) receptors are both involved in differentiation to Treg, but through different mechanisms. Since A(2B) antagonist blocked differentiation to Treg without suppressing T cell activation, it is possible that blockade of A(2B) receptor would facilitate tumor immunity.


Assuntos
Diferenciação Celular , Ativação Linfocitária , Receptor A1 de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Linfócitos T Reguladores/imunologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Fatores de Transcrição Forkhead , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Linfócitos T Reguladores/citologia
18.
Front Immunol ; 12: 763647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745139

RESUMO

Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. Heart-resident and infiltrated macrophages have been shown to play important roles in the cardiac remodeling that occurs in response to cardiac pressure overload. However, the possible roles of T cells in this process, have not been well characterized. Here we show that T cell depletion conferred late-stage heart protection but induced cardioprotective hypertrophy at an early stage of heart failure caused by cardiac pressure overload. Single-cell RNA sequencing analysis revealed that CD8+T cell depletion induced cardioprotective hypertrophy characterized with the expression of mitochondrial genes and growth factor receptor genes. CD8+T cells regulated the conversion of both cardiac-resident macrophages and infiltrated macrophages into cardioprotective macrophages expressing growth factor genes such as Areg, Osm, and Igf1, which have been shown to be essential for the myocardial adaptive response after cardiac pressure overload. Our results demonstrate a dynamic interplay between cardiac CD8+T cells and macrophages that is necessary for adaptation to cardiac stress, highlighting the homeostatic functions of resident and infiltrated macrophages in the heart.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Insuficiência Cardíaca/imunologia , Macrófagos/fisiologia , Análise de Célula Única/métodos , Animais , Cardiomegalia/etiologia , Diferenciação Celular , Modelos Animais de Doenças , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Immunol ; 12: 687669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248973

RESUMO

Regulatory T cells (Tregs) play a crucial role in preventing antitumor immune responses in cancer tissues. Cancer tissues produce large amounts of transforming growth factor beta (TGF-ß), which promotes the generation of Foxp3+ Tregs from naïve CD4+ T cells in the local tumor microenvironment. TGF-ß activates nuclear factor kappa B (NF-κB)/p300 and SMAD signaling, which increases the number of acetylated histones at the Foxp3 locus and induces Foxp3 gene expression. TGF-ß also helps stabilize Foxp3 expression. The curcumin analog and antitumor agent, GO-Y030, prevented the TGF-ß-induced generation of Tregs by preventing p300 from accelerating NF-κB-induced Foxp3 expression. Moreover, the addition of GO-Y030 resulted in a significant reduction in the number of acetylated histones at the Foxp3 promoter and at the conserved noncoding sequence 1 regions that are generated in response to TGF-ß. In vivo tumor models demonstrated that GO-Y030-treatment prevented tumor growth and reduced the Foxp3+ Tregs population in tumor-infiltrating lymphocytes. Therefore, GO-Y030 exerts a potent anticancer effect by controlling Treg generation and stability.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Curcumina/análogos & derivados , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Curcumina/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Carga Tumoral/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo
20.
EBioMedicine ; 44: 50-59, 2019 06.
Artigo em Inglês, Francês | MEDLINE | ID: mdl-31097410

RESUMO

BACKGROUND: Clinical trials on multiple sclerosis with repeated injections of monoclonal antibodies depleting CD4+ T cells have not resulted in much success as a disease therapy. Here, we developed an immunotherapy for EAE in mice by combining a transient depletion of T cells together with the administration of neuron derived peptides. METHODS: EAE was induced in SJL and C57BL/6 mice, by proteolipid protein peptide PLP139-151 (pPLP) and myelin-oligodendrocyte glycoprotein MOG35-55 (pMOG) peptides, respectively. Anti-CD4 and anti-CD8 antibody were injected intraperitoneally before or after peptide immunization. EAE scores were evaluated and histology data from brain and spinal cord were analyzed. Splenocytes were isolated and CD4+, CD4+CD25- and CD4+CD25+ T cells were purified and cultured in the presence of either specific peptides or anti-CD3 antibody and proliferation of T cells as well as cytokines in supernatant were assessed. FINDINGS: This experimental treatment exhibited therapeutic effects on mice with established EAE in pPLP-susceptible SJL mice and pMOG-susceptible C57BL/6 mice. Mechanistically, we revealed that antibody-induced apoptotic T cells triggered macrophages to produce TGFß, and together with administered auto-antigenic peptides, generated antigen-specific Foxp3+ regulatory T cells (Treg cells) in vivo. INTERPRETATION: We successfully developed a specific immunotherapy to EAE by generating autoantigen-specific Treg cells. These findings have overcome the drawbacks of long and repeated depletion of CD4+ T cells, but also obtained long-term immune tolerance, which should have clinical implications for the development of a new effective therapy for multiple sclerosis. FUND: This research was supported by the Intramural Research Program of the NIH, NIDCR.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/imunologia , Autoantígenos/administração & dosagem , Encefalomielite Autoimune Experimental/imunologia , Peptídeos/administração & dosagem , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Biomarcadores/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Tolerância Imunológica , Fatores Imunológicos , Imunoterapia , Ativação Linfocitária , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Peptídeos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Fagócitos/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA