Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(8): 3108-3123, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38648199

RESUMO

The expansion of agriculture and the need for sustainable practices drives breeders to develop plant varieties better adapted to abiotic stress such as nutrient deficiency, which negatively impacts yields. Phosphorus (P) is crucial for photosynthesis and plant growth, but its availability in the soil is often limited, hampering crop development. In this study, we examined the response of two popcorn inbred lines, L80 and P7, which have been characterized previously as P-use inefficient and P-use efficient, respectively, under low (stress) and high P (control) availability. Physiological measurements, proteomic analysis, and metabolite assays were performed to unravel the physiological and molecular responses associated with the efficient use of P in popcorn. We observed significant differences in protein abundances in response to the P supply between the two inbred lines. A total of 421 differentially expressed proteins (DEPs) were observed in L80 and 436 DEPs in P7. These proteins were involved in photosynthesis, protein biosynthesis, biosynthesis of secondary metabolites, and energy metabolism. In addition, flavonoids accumulated in higher abundance in P7. Our results help us understand the major components of P utilization in popcorn, providing new insights for popcorn molecular breeding programs.


Assuntos
Fósforo , Fotossíntese , Proteínas de Plantas , Proteômica , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Proteômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Flavonoides/metabolismo , Proteoma/metabolismo
2.
J Am Chem Soc ; 146(19): 13676-13688, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693710

RESUMO

Peptide-receptor interactions play critical roles in a wide variety of physiological processes. Methods to link bioactive peptides covalently to unmodified receptors on the surfaces of living cells are valuable for studying receptor signaling, dynamics, and trafficking and for identifying novel peptide-receptor interactions. Here, we utilize peptide analogues bearing deactivated aryl diazonium groups for the affinity-driven labeling of unmodified receptors. We demonstrate that aryl diazonium-bearing peptide analogues can covalently label receptors on the surface of living cells using both the neurotensin and the glucagon-like peptide 1 receptor systems. Receptor labeling occurs in the complex environment of the cell surface in a sequence-specific manner. We further demonstrate the utility of this covalent labeling approach for the visualization of peptide receptors by confocal fluorescence microscopy and for the enrichment and identification of labeled receptors by mass spectrometry-based proteomics. Aryl diazonium-based affinity-driven receptor labeling is attractive due to the high abundance of tyrosine and histidine residues susceptible to azo coupling in the peptide binding sites of receptors, the ease of incorporation of aryl diazonium groups into peptides, and the relatively small size of the aryl diazonium group. This approach should prove to be a powerful and relatively general method to study peptide-receptor interactions in cellular contexts.


Assuntos
Compostos de Diazônio , Compostos de Diazônio/química , Humanos , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Animais
3.
BMC Plant Biol ; 24(1): 753, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107711

RESUMO

BACKGROUND: When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT: Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION: Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.


Assuntos
Chlamydomonas reinhardtii , Chlorella , Regulação para Baixo , Ácidos Graxos , Nitrogênio , Chlorella/metabolismo , Chlorella/genética , Nitrogênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Proteômica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese
4.
Plant Commun ; 5(8): 100984, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38845198

RESUMO

The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria. To date, the transcriptome of individual cells isolated from developing soybean nodules has been established, but the transcriptomic signatures of cells from the mature soybean nodule have not yet been characterized. Using single-nucleus RNA-seq and Molecular Cartography technologies, we precisely characterized the transcriptomic signature of soybean root and mature nodule cell types and revealed the co-existence of different sub-populations of B. diazoefficiens-infected cells in the mature soybean nodule, including those actively involved in nitrogen fixation and those engaged in senescence. Mining of the single-cell-resolution nodule transcriptome atlas and the associated gene co-expression network confirmed the role of known nodulation-related genes and identified new genes that control the nodulation process. For instance, we functionally characterized the role of GmFWL3, a plasma membrane microdomain-associated protein that controls rhizobial infection. Our study reveals the unique cellular complexity of the mature soybean nodule and helps redefine the concept of cell types when considering the infection zone of the soybean nodule.


Assuntos
Glycine max , Nodulação , Nódulos Radiculares de Plantas , Transcriptoma , Glycine max/genética , Glycine max/microbiologia , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Análise de Célula Única , Regulação da Expressão Gênica de Plantas , Simbiose/genética , Fixação de Nitrogênio/genética , Bradyrhizobium/genética , Bradyrhizobium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA