Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biomacromolecules ; 25(2): 541-563, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240244

RESUMO

Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.


Assuntos
Sistemas de Liberação de Medicamentos , Nanoestruturas , Polímeros/química , Preparações Farmacêuticas , Nanoestruturas/química
2.
Soft Matter ; 13(6): 1107-1115, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28058411

RESUMO

Many common amphiphiles self-assemble in water to produce heterogeneous populations of discrete and symmetric but polydisperse and multilamellar vesicles isolating the encapsulated aqueous core from the surrounding bulk. But when mixtures of amphiphiles of vastly different elastic properties co-assemble, their non-uniform molecular organization can stabilize lower symmetries and produce novel shapes. Here, using high resolution electron cryomicroscopy and tomography, we identify the spontaneous formation of a membrane morphology consisting of unilamellar tubular vesicles in dilute aqueous solutions of binary mixtures of two different amphiphiles of vastly different origins. Our results show that aqueous phase mixtures of a fluid-phase phospholipid and an amphiphilic block copolymer spontaneously assume a bimodal polymorphic character in a composition dependent manner: over a broad range of compositions (15-85 mol% polymer component), a tubular morphology co-exists with spherical vesicles. Strikingly, in the vicinity of equimolar compositions, an exclusively tubular morphology (Lt; diameter, ∼15 nm; length, >1 µm; core, ∼2.0 nm; wall, ∼5-6 nm) emerges in an apparent steady state. Theory suggests that the spontaneous stabilization of cylindrical vesicles, unaided by extraneous forces, requires a significant spontaneous bilayer curvature, which in turn necessitates a strongly asymmetric membrane composition. We confirm that such dramatic compositional asymmetry is indeed produced spontaneously in aqueous mixtures of a lipid and polymer through two independent biochemical assays - (1) reduction in the quenching of fluorophore-labeled lipids and (2) inhibition in the activity of externally added lipid-hydrolyzing phospholipase A2, resulting in a significant enrichment of the polymer component in the outer leaflet. Taken together, these results illustrate the coupling of the membrane shape with local composition through spontaneous curvature generation under conditions of asymmetric distribution of mixtures of disparate amphiphiles.

3.
Angew Chem Int Ed Engl ; 56(39): 11754-11758, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28742233

RESUMO

The synthesis and characterization of a new protein-polymer conjugate composed of ß lactoglobulin A (ßLG A) and poly(ethylene glycol) PEG is described. ßLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter. The self-assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein-polymer conjugate. These protein-polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins.


Assuntos
Lactoglobulinas/química , Nanocápsulas/química , Polietilenoglicóis/química , Aminação , Dicroísmo Circular , Química Click , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ácido Succínico/química , Temperatura
4.
Angew Chem Int Ed Engl ; 56(52): 16531-16535, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28940795

RESUMO

Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer-membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1') and nearest-neighbor positions (P2, P2') and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400-fold improvement in OmpT catalytic efficiency, with a kcat /Km value of 6.1×106  L mol-1 s-1 . Wild-type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme.

5.
Org Biomol Chem ; 13(11): 3202-6, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25673512

RESUMO

Bio-orthogonal chemistry has been widely used for conjugation of polymer molecules to proteins. Here, we demonstrate the conjugation of polyethylene glycol (PEG) to bovine beta-lactoglobulin (BLG) by photo-induced cyclo-addition of tetrazole-appended PEG and allyl-modified BLG. During the course of the investigation, a significant side-reaction was found to occur for the conjugation of PEG-tetrazole to native BLG. Further exploration of the underlying chemistry reveals that the presence of a tryptophan residue is sufficient for conjugation of tetrazole-modified molecules.


Assuntos
Lactoglobulinas/química , Tetrazóis/química , Animais , Bovinos , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Polietilenoglicóis/química
6.
J Am Chem Soc ; 136(29): 10186-9, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25003585

RESUMO

Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.


Assuntos
Lipídeos/química , Membranas Artificiais , Polímeros/química , Tensoativos/química , Recuperação de Fluorescência Após Fotodegradação , Microscopia de Fluorescência , Propriedades de Superfície
7.
Methods Mol Biol ; 2829: 185-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951334

RESUMO

Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.


Assuntos
Antígenos Virais , Baculoviridae , Glicoproteína da Espícula de Coronavírus , Animais , Baculoviridae/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Sf9 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Recombinantes/genética , Linhagem Celular , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Glicosilação , Insetos/genética , Spodoptera , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia
8.
Angew Chem Int Ed Engl ; 52(2): 749-53, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23161746

RESUMO

The dopamine receptor D2 (DRD2), a G-protein coupled receptor is expressed into PBd(22)-PEO(13) and PMOXA(20)-PDMS(54)-PMOXA(20) block copolymer vesicles. The conformational integrity of the receptor is confirmed by antibody- and ligand-binding assays. Replacement of bound dopamine is demonstrated on surface-immobilized polymersomes, thus making this a promising platform for drug screening.


Assuntos
Polímeros/química , Polímeros/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Descoberta de Drogas , Humanos , Ligantes
9.
Membranes (Basel) ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837639

RESUMO

The stratum corneum (SC), the outer layer of the skin, plays a crucial role as a barrier protecting the underlying cells from external stress. The SC comprises three key components: ceramide (CER), free fatty acid (FFA), and cholesterol, along with small fractions of cholesterol sulfate and cholesterol ester. In order to gain a deeper understanding about the interdependence of the two major components, CER and FFA, on the organizational, structural, and functional properties of the SC layer, a library of SC lipid liposome (SCLL) models was developed by mixing CER (phytosphingosine or sphingosine), FFA (oleic acid, palmitic acid, or stearic acid), cholesterol, and cholesterol sulfate. Self-assembly of the SC lipids into lamellar phases was first confirmed by small-angle X-ray scattering. Short periodicity and long periodicity phases were identified for SCLLs containing phytosphingosines and sphingosine CERs, respectively. Furthermore, unsaturation in the CER acyl and FFA chains reduced the lipid conformational ordering and packing density of the liposomal bilayer, which were measured by differential scanning calorimetry and Fourier transform infrared spectroscopy. The introduction of unsaturation in the CER and/or FFA chains also impacted the lamellar integrity and permeability. This extensive library of SCLL models exhibiting physiologically relevant lamellar phases with defined structural and functional properties may potentially be used as a model system for screening pharmaceuticals or cosmetic agents.

10.
Langmuir ; 28(4): 2044-8, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22201509

RESUMO

To improve the stability of cell membrane mimics, there has been growing interest in the use of block copolymers. Here, we present an easy approach to create an array of planar polymeric matrices capable of hosting membrane proteins. The array of polymeric matrices was formed by the selective deposition of triblock copolymers onto an array of hydrophilic islands situated within a hydrophobic background. The thickness of these matrices corresponds to the length of a single polymer chain. These polymeric matrices were used to host cell-free expressed membrane proteins, and offers a prototype from which a membrane protein array can be created for diagnostics or drug discovery purposes.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Receptores de Dopamina D2/biossíntese , Animais , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas
11.
ACS Nano ; 16(10): 16757-16775, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36223228

RESUMO

Current parenteral coronavirus disease 2019 (Covid-19) vaccines inadequately protect against infection of the upper respiratory tract. Additionally, antibodies generated by wild type (WT) spike-based vaccines poorly neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. To address the need for a second-generation vaccine, we have initiated a preclinical program to produce and evaluate a potential candidate. Our vaccine consists of recombinant Beta spike protein coadministered with synthetic CpG adjuvant. Both components are encapsulated within artificial cell membrane (ACM) polymersomes, synthetic nanovesicles efficiently internalized by antigen presenting cells, including dendritic cells, enabling targeted delivery of cargo for enhanced immune responses. ACM vaccine is immunogenic in C57BL/6 mice and Golden Syrian hamsters, evoking high serum IgG and neutralizing responses. Compared to an ACM-WT spike vaccine that generates predominantly WT-neutralizing antibodies, the ACM-Beta spike vaccine induces antibodies that neutralize WT and Beta viruses equally. Intramuscular (IM)-immunized hamsters are strongly protected from weight loss and other clinical symptoms after the Beta challenge but show delayed viral clearance in the upper airway. With intranasal (IN) immunization, however, neutralizing antibodies are generated in the upper airway concomitant with rapid and potent reduction of viral load. Moreover, antibodies are cross-neutralizing and show good activity against Omicron. Safety is evaluated in New Zealand white rabbits in a repeated dose toxicological study under Good Laboratory Practice (GLP) conditions. Three doses, IM or IN, at two-week intervals do not induce an adverse effect or systemic toxicity. Cumulatively, these results support the application for a Phase 1 clinical trial of ACM-polymersome-based Covid-19 vaccine (ClinicalTrials.gov identifier: NCT05385991).


Assuntos
Células Artificiais , COVID-19 , Camundongos , Cricetinae , Humanos , Coelhos , Animais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , SARS-CoV-2 , Membranas Artificiais , COVID-19/prevenção & controle , Camundongos Endogâmicos C57BL , Anticorpos Neutralizantes , Imunoglobulina G
12.
ACS Nano ; 15(10): 15754-15770, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34618423

RESUMO

Multiple successful vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to address the ongoing coronavirus disease 2019 (Covid-19) pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein coadministered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising poly(butadiene)-b-poly(ethylene glycol) and a cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells (DC1 and DC2), which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing antibody titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of functional memory CD4+ and CD8+ T cells that produce T helper type 1 cytokines. This study is an important step toward the development of an efficacious vaccine in humans.


Assuntos
Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Subunidades Proteicas , SARS-CoV-2 , Vacinas de Subunidades Antigênicas
13.
Biomolecules ; 10(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570704

RESUMO

Outer membrane protease (OmpT) is a 33.5 kDa aspartyl protease that cleaves at dibasic sites and is thought to function as a defense mechanism for E. coli against cationic antimicrobial peptides secreted by the host immune system. Despite carrying three dibasic sites in its own sequence, there is no report of OmpT autoproteolysis in vivo. However, recombinant OmpT expressed in vitro as inclusion bodies has been reported to undergo autoproteolysis during the refolding step, thus resulting in an inactive protease. In this study, we monitor and compare levels of in vitro autoproteolysis of folded and unfolded OmpT and examine the role of lipopolysaccharide (LPS) in autoproteolysis. SDS-PAGE data indicate that it is only the unfolded OmpT that undergoes autoproteolysis while the folded OmpT remains protected and resistant to autoproteolysis. This selective susceptibility to autoproteolysis is intriguing. Previous studies suggest that LPS, a co-factor necessary for OmpT activity, may play a protective role in preventing autoproteolysis. However, data presented here confirm that LPS plays no such protective role in the case of unfolded OmpT. Furthermore, OmpT mutants designed to prevent LPS from binding to its putative LPS-binding motif still exhibited excellent protease activity, suggesting that the putative LPS-binding motif is of less importance for OmpT's activity than previously proposed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/química , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Redobramento de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Polymers (Basel) ; 12(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331448

RESUMO

In this work, we have used low-molecular-weight (PEG12-b-PCL6, PEG12-b-PCL9 or PEG16-b-PLA38; MW, 1.25-3.45 kDa) biodegradable block co-polymers to construct nano- and micron-scaled hybrid (polymer/lipid) vesicles, by solvent dispersion and electroformation methods, respectively. The hybrid vesicles exhibit physical properties (size, bilayer thickness and small molecule encapsulation) of a vesicular boundary, confirmed by cryogenic transmission electron microscopy, calcein leakage assay and dynamic light scattering. Importantly, we find that these low MW polymers, on their own, do not self-assemble into polymersomes at nano and micron scales. Using giant unilamellar vesicles (GUVs) model, their surface topographies are homogeneous, independent of cholesterol, suggesting more energetically favorable mixing of lipid and polymer. Despite this mixed topography with a bilayer thickness similar to that of a lipid bilayer, variation in surface topology is demonstrated using the interfacial sensitive phospholipase A2 (sPLA2). The biodegradable hybrid vesicles are less sensitive to the phospholipase digestion, reminiscent of PEGylated vesicles, and the degree of sensitivity is polymer-dependent, implying that the nano-scale surface topology can further be tuned by its chemical composition. Our results reveal and emphasize the role of phospholipids in promoting low MW polymers for spontaneous vesicular self-assembly, generating a functional hybrid lipid-polymer interface.

16.
Bioconjug Chem ; 20(1): 20-3, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19099498

RESUMO

The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at the N-terminus of enzymes, e.g. horseradish peroxidase (HRP) and the red fluorescent protein DsRed. The effective introduction of azides was verified by mass spectrometry, after which the azido-proteins were used in Cu(I)-catalyzed [3 + 2] cycloaddition reactions. Azido-HRP retained its catalytic activity after conjugation of a small molecule. This modified protein could also be successfully immobilized on the surface of an acetylene-covered polymersome. Azido-DsRed was coupled to an acetylene-bearing protein allowing it to act as a fluorescent label, demonstrating the wide applicability of the diazo transfer procedure.


Assuntos
Azidas/química , Técnicas de Sonda Molecular , Proteínas/química , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Proteínas Luminescentes/química , Lisina/química , Água , Proteína Vermelha Fluorescente
17.
Chemistry ; 15(5): 1107-14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19072950

RESUMO

Porous polymersomes based on block copolymers of isocyanopeptides and styrene have been used to anchor enzymes at three different locations, namely, in their lumen (glucose oxidase, GOx), in their bilayer membrane (Candida antarctica lipase B, CalB) and on their surface (horseradish peroxidase, HRP). The surface coupling was achieved by click chemistry between acetylene-functionalised anchors on the surface of the polymersomes and azido functions of HRP, which were introduced by using a direct diazo transfer reaction to lysine residues of the enzyme. To determine the encapsulation and conjugation efficiency of the enzymes, they were decorated with metal-ion labels and analysed by mass spectrometry. This revealed an almost quantitative immobilisation efficiency of HRP on the surface of the polymersomes and a more than statistical incorporation efficiency for CalB in the membrane and for GOx in the aqueous compartment. The enzyme-decorated polymersomes were studied as nanoreactors in which glucose acetate was converted by CalB to glucose, which was oxidised by GOx to gluconolactone in a second step. The hydrogen peroxide produced was used by HRP to oxidise 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to ABTS(.+). Kinetic analysis revealed that the reaction step catalysed by HRP is the fastest in the cascade reaction.


Assuntos
Enzimas Imobilizadas/metabolismo , Nanoestruturas/química , Polímeros/síntese química , Catálise , Proteínas Fúngicas , Gluconatos/metabolismo , Glucose/metabolismo , Glucose Oxidase/síntese química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/síntese química , Peroxidase do Rábano Silvestre/metabolismo , Cinética , Lactonas , Lipase/síntese química , Lipase/metabolismo , Nanoestruturas/ultraestrutura , Oxirredução , Polímeros/química
18.
Soft Matter ; 4(5): 1003-1010, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32907133

RESUMO

The diblock copolymer polystyrene-b-polyisocyanoalanine(2-thiophene-3-yl-ethyl)amide (PS-PIAT) was prepared by reacting the isocyanide monomer (1) with a Ni(ii) initiator complex prepared from polystyrene amine (PS40NH2), either obtained by atom transfer radical polymerization (ATRP) or anionic polymerization (AP). It was found that polymerization of optically pure 1 followed first-order kinetics in monomer concentration and resulted in the formation of insoluble block copolymers, whereas the rate of polymerization of optical mixtures of 1 was retarded and yielded block copolymers that were better soluble. Furthermore, PS-PIAT polymersomes of which the PS-block was prepared by AP were more stable than polymersomes of which the PS-block was prepared by ATRP, as was indicated by combined turbidity and dynamic light scattering (DLS) measurements on the aggregate solutions.

19.
Org Biomol Chem ; 6(23): 4315-8, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19005589

RESUMO

Polystyrene(40)-b-poly(isocyanoalanine(2-thiophen-3-yl-ethyl)amide)(50) (PS-PIAT) polymersomes have the unique property of being sufficiently porous to allow diffusion of small (organic) substrates while retaining large biomolecules such as enzymes inside. Herein we report on the encapsulation and protection of glucose oxidase (GOx) and horse radish peroxidase (HRP) in PS-PIAT polymersomes and the successful employment of these functionalised nanoreactors in a cascade reaction. The demonstrated concept allows for further application in other enzymatic cascade reactions, bio-organic hybrid systems and biosensing devices.


Assuntos
Alanina/análogos & derivados , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Iminas/química , Nanotecnologia , Poliestirenos/química , Alanina/química , Porosidade , Fatores de Tempo
20.
Biomacromolecules ; 8(12): 3723-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994700

RESUMO

Polystyrene-polyisocyanopeptide (PS-PIAT) polymersomes containing CALB in two different locations, one in the aqueous inner compartment and one in the bilayer, were investigated for enzymatic ring-opening polymerization of lactones in water. It is shown that the monomers 8-octanolactone and dodecalactone yield oligomers with this polymersome system. It is also observed that the polymerization activity is dependent on the position of the enzyme in the polymersome. SEM investigations show that the polymersome structures were destabilized during the polymerization. Further investigations show that the vesicular morphology of the polymersomes was destabilized only in the case of polymer product formation.


Assuntos
Enzimas/química , Nanopartículas/química , Polímeros/química , Enzimas/metabolismo , Enzimas/ultraestrutura , Nanopartículas/ultraestrutura , Peptídeos/química , Polímeros/metabolismo , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA