Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335194

RESUMO

In this work, we studied the combination of nitrogen-doped carbon quantum dots (N-CQD), a hydroxide-ion conducting ionomer based on polysulfone (PSU) and polyaniline (PANI), to explore the complementary properties of these materials in high-performance nanostructured electrodes for the oxygen reduction reaction (ORR) in alkaline solution. N-CQD were made by hydrothermal synthesis from glucosamine hydrochloride (GAH) or glucosamine hydrochloride and N-Octylamine (GAH-Oct), and PSU were quaternized with trimethylamine (PSU-TMA). The nanocomposite electrodes were prepared on carbon paper by drop-casting. Furthermore, we succeeded in preparing PSU-TMA + PANI + GAH-Oct fibers by electrospinning. The capacitance of the electrodes was investigated by cyclic voltammetry and impedance spectroscopy, which gave similar trends. The ORR was investigated by linear sweep voltammetry at rotating disk electrode speeds between 250 and 2000 rpm in an oxygen-saturated 1 M KOH solution. Koutecky-Levich plots showed that four electrons were exchanged for nanocomposite electrodes containing CQD. The highest reduction currents were measured for the electrodes containing GAH-Oct. The Tafel plots gave the lowest slope and the most positive half-wave potential for PSU-TMA + PANI + GAH-Oct fibers. The best electrocatalytic activity of this electrode could be related to the high amount of graphitic nitrogen in GAH-Oct. Long-term cycling tests showed no significant modification of the onset potential, but a change of the current in the mass transport limited region, indicated the evolution of the microstructure of the nanocomposite ORR electrode modifying the mass transport conditions during the first 400 cycles before reaching stationary conditions. FTIR spectra were used to study possible electrode degradation after the ORR in 1 M KOH: the only change was due to the reaction of PANI emeraldine salt to emeraldine base, whereas the other constituents of the multiphase electrode did not show any degradation.


Assuntos
Nanocompostos , Pontos Quânticos , Carbono/química , Eletrodos , Hidróxidos , Nitrogênio/química , Oxigênio
2.
ACS Appl Mater Interfaces ; 14(41): 46537-46547, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194150

RESUMO

Composite electrocatalytic electrodes made from B-N co-doped carbon quantum dots (CQD) and various anion exchange ionomers (AEI) are studied for the oxygen reduction reaction (ORR) in alkaline solutions. The quantity and positions of dopants in CQD, prepared by hydrothermal synthesis, are analyzed by various spectroscopies, including 11B NMR spectroscopy that evidenced boronic acid at edge sites. The AEI are synthesized with various backbones, including more hydrophilic polysulfone, hydrophobic poly(alkylene biphenyl), and poly(2,6-dimethyl-1,4-phenylene oxide) with intermediate hydrophilicity; the functional groups are trimethylammonium moieties grafted on long (LC) or short (SC) side chains. The CQD/AEI ink is drop-casted on activated carbon paper, and the samples are fixed on a rotating disk electrode and studied in three-electrode configuration in oxygen-saturated 0.1 M KOH. The onset potentials are among the best in the literature (Eonset ≈ 0.94 V vs RHE). The highest electrocatalytic activity is observed for electrodes containing AEI with long side chains; the sample containing PPO LC attains excellent ORR currents approaching that of benchmark Pt/C cloth. The electrocatalytic performances are discussed in view of the many relevant AEI parameters, including hydrophilicity, oxygen permeability, catalyst dispersivity, and ionic conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA