Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(4): 2097-2104, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497219

RESUMO

Nitrosyl metal complexes (M-NO), in which nitrosyl ligands are coordinated to transition-metal ions, have been studied from the viewpoints of physiological activity, catalytic activity, and photosensitivity. The structural flexibility and electric polarization of the nitrosyl ligand are attractive characteristics. Herein we show a photoswitchable nonlinear-optical (NLO) crystal based on a dysprosium-iron nitrosyl assembly. This crystal is composed of a one-dimensional chain structure in the polar Pna21 space group. Because of spontaneous electric polarization, it exhibits a NLO effect of second harmonic generation (SHG). The SHG signal reversibly changes by alternate irradiation with 473 and 804 nm laser lights. The observed photoreversible switching effect on SHG is caused by photoinduced linkage isomerization of the metal nitrosyl sites, i.e., M-N+═O ↔ M-O═N+. Such an optically switchable NLO crystal should be useful for optical devices such as optical filters and optical shutters as well as probes in SHG microscopy.

2.
J Am Chem Soc ; 141(4): 1775-1780, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30645116

RESUMO

Light- or electromagnetic wave-responsive magnetism is an attractive issue in spin chemistry and optical materials science. Herein we show the magnetization reversal induced by visible-light pulsed laser and the ultrafast dynamic magnetooptical effect caused by terahertz (THz) pulsed laser irradiation onto chemically synthesized magnetic films based on gallium-titanium-cobalt-substituted ε-Fe2O3 (GTC-ε-Fe2O3) and ε-Fe2O3 nanoparticles. Visible-light pulsed laser irradiation switches the sign of the Faraday effect in GTC-ε-Fe2O3 films. On the other hand, irradiating the ε-Fe2O3 film with pulsed THz light induces an ultrafast Faraday rotation in an extremely short time of 400 fs. The time evolution dynamics of these ultrafast magnetooptical effects are theoretically demonstrated by stochastic Landau-Lifshitz-Gilbert calculations of a nanoparticle model that considers all motions of the individual spins. These ε-iron oxide magnetic nanomaterials are expected to contribute to high-density magnetic memory media or high-speed operation circuit magnetic devices.

3.
Chemistry ; 24(46): 11880-11884, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29974541

RESUMO

A new series of metal-substituted ϵ-iron oxides, ϵ-Rux Fe2-x O3 (x=0 (1), 0.005 (2), and 0.014 (3)) nanoparticles (average size=20 nm) is synthesized by sintering iron oxide hydroxide with ruthenium hydroxide in a silica matrix. The samples are characterized by inductively coupled plasma mass spectrometry, and energy dispersive X-ray spectroscopy (EDS) of transmission electron microscope. The X-ray diffraction pattern shows that ϵ-Rux Fe2-x O3 has an orthorhombic crystal structure with a space group of Pna21 and the Rietveld analyses show that Ru is doped selectively at the regular octahedral C site among the four non-equivalent Fe sites (A, B, C, and D site). Magnetization vs. temperature plots show that the Curie temperature (TC ) depends on x, and TC =498 K for 1, 497 K for 2, and 496 K for 3. Magnetization vs. external magnetic field plots indicate that the coercive field (Hc ) increases from 17.7 kOe (1) to 20.3 kOe (3). This increment of 15 % on Hc is attributed to the single ion anisotropy of the magnetic spin on RuIII (4d5 , S=1/2).

4.
J Am Chem Soc ; 139(38): 13268-13271, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28901752

RESUMO

Magnetic ferrites are stable, sustainable, and economical. Consequently, they have been used in various fields. The development of large coercive field (large Hc) magnetic ferrites is a very important but challenging issue to accelerate the spread of use and to expand practical applications. In this study, we prepared a rhodium-substituted ε-iron oxide film and observed a remarkably large Hc value of 35 kOe at room temperature. This is the largest value among magnetic ferrites to date. Such a large-Hc ferrite is expected to greatly expand the application of magnetic ferrites. Furthermore, when the temperature dependence of the magnetic properties was measured, an even larger Hc value of 45 kOe was recorded at 200 K. Such large Hc values are much larger than those of conventional hard magnetic ferrites.

5.
Angew Chem Int Ed Engl ; 55(38): 11403-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27555528

RESUMO

From the viewpoints of large capacity, long-term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal-substituted ϵ-Fe2 O3 , ϵ-Ga(III) 0.31 Ti(IV) 0.05 Co(II) 0.05 Fe(III) 1.59 O3 , nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ϵ-Fe2 O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single-ion anisotropy on Co(II) (S=3/2) along the c-axis. The saturation magnetization was increased by 44 % with Ga(III) (S=0) and Ti(IV) (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal-to-noise ratio compared to the currently used magnetic tape.

6.
RSC Adv ; 14(11): 7903-7909, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38449820

RESUMO

As terahertz (THz) and sub-THz region electromagnetic waves are becoming vital for industrial applications such as 5G wireless communication, so too are THz and sub-THz wave absorbing materials. Herein, we report the optical properties of monoclinic zirconia (m-ZrO2) nanoparticles in these frequency regions, with different crystalline sizes. The crystalline sizes of the three samples, measured by transmission electron microscopy, are 93 ± 23 nm (denoted 1), 28 ± 14 nm (denoted 2) and 2.6 ± 0.7 nm (denoted 3). X-ray diffraction and Raman spectra show that 1 and 2 have high crystallinity whereas 3 shows peak broadening due to its small crystalline size. Terahertz time-domain spectroscopy (THz-TDS) measurements of pelletised samples show that the small crystalline size sample exhibits larger absorption, e.g., the absorbance value at 300 GHz is 0.18 mm-1 (1), 0.04 mm-1 (2) and 1.11 mm-1 (3), and the related dielectric loss value (ε'') is 0.04 (1), 0.01 (2) and 0.82 (3), respectively. This is considered to be due to the proportional increase in surface water molecules for the small particle size sample due to the relative increase in surface area and under-coordinated atoms, shown by IR spectra. These results show that small crystalline size m-ZrO2 nanoparticles have potential as THz and sub-THz wave absorbing materials, which are crucial for noise reduction in THz and sub-THz wave technologies.

7.
Nat Commun ; 14(1): 8466, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151489

RESUMO

Solid refrigerants exhibiting a caloric effect upon applying external stimuli are receiving attention as one of the next-generation refrigeration technologies. Herein, we report a new inorganic refrigerant, rubidium cyano-bridged manganese-iron-cobalt ternary metal assembly (cyano-RbMnFeCo). Cyano-RbMnFeCo shows a reversible barocaloric effect with large reversible adiabatic temperature changes of 74 K (from 57 °C to -17 °C) at 340 MPa, and 85 K (from 88 °C to 3 °C) at 560 MPa. Such large reversible adiabatic temperature changes have yet to be reported among caloric effects in solid-solid phase transition refrigerants. The reversible refrigerant capacity is 26000 J kg-1 and the temperature window is 142 K. Additionally, cyano-RbMnFeCo shows barocaloric effects even at low pressures, e.g., reversible adiabatic temperature change is 21 K at 90 MPa. Furthermore, direct measurement of the temperature change using a thermocouple shows +44 K by applying pressure. The temperature increase and decrease upon pressure application and release are repeated over 100 cycles without any degradation of the performance. This material series also possesses a high thermal conductivity value of 20.4 W m-1 K-1. The present barocaloric material may realize a high-efficiency solid refrigerant.

8.
RSC Adv ; 12(42): 27125-27130, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36275997

RESUMO

Various applications employ millimeter waves. For example, the carrier frequencies of vehicle radar in advanced driver assistance systems are 76-81 GHz millimeter waves. Here, we investigate the particle size effect on millimeter-wave absorption of gallium-substituted epsilon iron oxide ε-Ga x Fe2-x O3 with x = 0.44 ± 0.01. Samples were composed of nanoparticles with sizes of 16.9(1) nm, 28.8(2) nm, and 41.4(1) nm. Millimeter wave absorption, Faraday rotation, and Faraday ellipticity were measured by terahertz time-domain spectroscopy. This series exhibits millimeter-wave absorption at 78.7, 78.2, and 77.7 GHz without an external magnetic field. The millimeter-wave absorption increases from 4.6 dB to 9.4 dB as the particle size increases. In the magnetized sample, the Faraday rotation angle increases from 9.1° to 18.4°, while the Faraday ellipticity increases from 0.27 to 0.52. The particle size effect can be explained by the change in the ratio of the surface and core of the nanoparticles. The present study should contribute to the realization of high-performance millimeter-wave absorbers.

9.
Dalton Trans ; 50(2): 452-459, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33393552

RESUMO

Iron oxide magnets, which are composed of the common elements iron and oxygen, are called ferrite magnets. They have diverse applications because they are chemically stable and inexpensive. Epsilon-iron oxide (ε-Fe2O3) is a polymorph that shows an extremely large coercive field as a magnetic oxide. It maintains its ferromagnetic ordering even when downsized to a single nano-sized scale (i.e.,<10 nm). Due to these characteristics, ε-Fe2O3 is highly expected to be used for high-density magnetic recording media in the big data era. Here, we describe the recent developments of magnetic films composed of metal-substituted ε-iron oxide, ε-MxFe2-xO3 (M: substitution metal), toward the next-generation of magnetic media.

10.
Chem Commun (Camb) ; 57(18): 2285-2288, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533380

RESUMO

Wireless actuation at the nanoscale is vital in many contexts, and magnetic fields acting on nanoparticles (NPs) are among the most effective tools when actuation concerns linear forces. However, effective tools to apply torques at the nanoscale are still missing, because NPs where the magnetic moment is strongly coupled to the lattice agglomerate due to their high magnetic moment. Here, we show that gallium-doped ε-iron oxide NPs have small interparticle magnetic interactions and huge lattice-coupling for efficiently applying torques at the nanoscale. In this view, they are expected to be useful tools to efficiently apply mechanical forces to induce cellular apoptosis and to discern between mechanical and thermal contributions to cellular apoptosis currently under debate.

11.
RSC Adv ; 10(65): 39611-39616, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35515366

RESUMO

Herein we report crystal growth control of rod-shaped ε-Fe2O3 nanocrystals by developing a synthesis based on the sol-gel technique using ß-FeO(OH) as a seed in the presence of a barium cation. ε-Fe2O3 nanocrystals are obtained over a wide calcination temperature range between 800 °C and 1000 °C. A low calcination temperature (800 °C) provides an almost cubic rectangular-shaped ε-Fe2O3 nanocrystal with an aspect ratio of 1.4, whereas a high calcination temperature (1000 °C) provides an elongated rod-shaped ε-Fe2O3 nanocrystal with an aspect ratio of 3.3. Such systematic anisotropic growth of ε-Fe2O3 is achieved due to the wide calcination temperature in the presence of barium cations. The surface energy and the anisotropic adsorption of barium on the surface of ε-Fe2O3 can explain the anisotropic crystal growth of rod-shaped ε-Fe2O3 along the crystallographic a-axis. The present work may provide important knowledge about how to control the anisotropic crystal shape of nanomaterials.

12.
Chem Sci ; 11(33): 8989-8998, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34123153

RESUMO

Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm-1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm-1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co-W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal-organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.

13.
Nat Chem ; 12(4): 338-344, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32203438

RESUMO

Ionic conductors serve as solid electrolytes for fuel cells and batteries, whereas polar crystals such as ferroelectrics and pyroelectrics-which are typically insulating materials-are used in electronic devices. Here we show a material that combines superionic conductivity with a polar crystal structure at room temperature. This three-dimensional anionic network is based on -Fe-N≡C-Mo- units, with Cs cations hosted in every other pore. In the resulting Cs1.1Fe0.95[Mo(CN)5(NO)]·4H2O material, the negative and positive charges of the framework and Cs+ ions, respectively, are non-symmetrically shifted in the c-axis direction of the unit cell, and spontaneous electric polarization is generated, in turn leading to second harmonic generation (SHG). Additionally, this material is a superionic conductor (with an ionic conductivity value of 4 × 10-3 S cm-1 at 318 K). Furthermore, the ionic conductivity significantly decreases under 532 nm light irradiation (from 1 × 10-3 S cm-1 to 6 × 10-5 S cm-1 at room temperature) and, when irradiation stops, returns to its original value within ~1 h.

14.
RSC Adv ; 10(48): 28786-28797, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520081

RESUMO

Biocompatibility restrictions have limited the use of magnetic nanoparticles for magnetic hyperthermia therapy to iron oxides, namely magnetite (Fe3O4) and maghemite (γ-Fe2O3). However, there is yet another magnetic iron oxide phase that has not been considered so far, in spite of its unique magnetic properties: ε-Fe2O3. Indeed, whereas Fe3O4 and γ-Fe2O3 have a relatively low magnetic coercivity, ε-Fe2O3 exhibits a giant coercivity. In this report, the heating power of ε-Fe2O3 nanoparticles in comparison with γ-Fe2O3 nanoparticles of similar size (∼20 nm) was measured in a wide range of field frequencies and amplitudes, in uncoated and polymer-coated samples. It was found that ε-Fe2O3 nanoparticles primarily heat in the low-frequency regime (20-100 kHz) in media whose viscosity is similar to that of cell cytoplasm. In contrast, γ-Fe2O3 nanoparticles heat more effectively in the high frequency range (400-900 kHz). Cell culture experiments exhibited no toxicity in a wide range of nanoparticle concentrations and a high internalization rate. In conclusion, the performance of ε-Fe2O3 nanoparticles is slightly inferior to that of γ-Fe2O3 nanoparticles in human magnetic hyperthermia applications. However, these ε-Fe2O3 nanoparticles open the way for switchable magnetic heating owing to their distinct response to frequency.

15.
Adv Mater ; 32(48): e2004897, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33029839

RESUMO

In the era of Big Data and the Internet of Things, data archiving is a key technology. From this viewpoint, magnetic recordings are drawing attention because they guarantee long-term data storage. To archive an enormous amount of data, further increase of the recording density is necessary. Herein a new magnetic recording methodology, "focused-millimeter-wave-assisted magnetic recording (F-MIMR)," is proposed. To test this methodology, magnetic films based on epsilon iron oxide nanoparticles are prepared and a focused-millimeter-wave generator is constructed using terahertz (THz) light. Irradiating the focused millimeter wave to epsilon iron oxide instantly switches its magnetic pole direction. The spin dynamics of F-MIMR are also calculated using the stochastic Landau-Lifshitz-Gilbert model considering all of the spins in an epsilon iron oxide nanoparticle. In F-MIMR, the heat-up effect of the recording media is expected to be suppressed. Thus, F-MIMR can be applied to high-density magnetic recordings.

16.
J Am Chem Soc ; 131(51): 18299-303, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19938830

RESUMO

Iron oxide (Fe(2)O(3)) has four crystal structures: gamma-, epsilon-, beta-, and alpha-Fe(2)O(3). Until now, routes of the phase transformations among the four Fe(2)O(3) phases have not been clarified because a systematic synthesis that yields all four Fe(2)O(3) phases has yet to be reported. Herein we report the synthesis of a series of Fe(2)O(3) nanoparticles using mesoporous SiO(2). The crystal structures of the Fe(2)O(3) nanoparticles change in the order of gamma-Fe(2)O(3) --> epsilon-Fe(2)O(3) --> beta-Fe(2)O(3) --> alpha-Fe(2)O(3) as the particle size increases. Threshold sizes were estimated as gamma --> epsilon at 8 nm, epsilon --> beta at 30 nm, and beta --> alpha at 50 nm in the synthesis using FeSO(4) as a precursor. The phase transformations among the four Fe(2)O(3) phases have been observed for the first time.

17.
J Am Chem Soc ; 131(3): 1170-3, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19115851

RESUMO

Millimeter waves (30-300 GHz) are starting to be used in next generation high-speed wireless communications. To avoid electromagnetic interference in this wireless communication, finding a suitable electromagnetic wave absorber in the millimeter wave range is an urgent matter. In this work, we prepared a high-performance millimeter wave absorber composed of a series of aluminum-substituted epsilon-iron oxide, epsilon-Al(x)Fe(2-x)O(3), nanomagnets (0 < or = x < or = 0.40) with a particle size between 25 and 50 nm. The materials in this series have an orthorhombic crystal structure in the Pna2(1) space group, which has four nonequivalent Fe sites and Al ion that predominantly occupies the tetrahedral [FeO(4)] site. The field-cooled magnetization curves showed that the T(C) values were 448, 480, and 500 K for x = 0.40, 0.21, and 0, respectively. The magnetization versus external magnetic field showed that the coercive field H(c) values at 300 K were 10.2, 14.9, and 22.5 kOe for x = 0.40, 0.21, and 0, respectively. The millimeter wave absorption properties were measured at room temperature by terahertz time domain spectroscopy. The frequencies of the absorption peaks for x = 0.40, 0.30, 0.21, 0.09, 0.06, and 0 were observed at 112, 125, 145, 162, 172, and 182 GHz, respectively. These absorptions are due to the natural resonance achieved by the large magnetic anisotropies in this series. Such frequencies are the highest ones for magnetic materials. Because aluminum is the third most abundant atom, aluminum-substituted epsilon-iron oxide is very economical, and thus these materials are advantageous for industrial applications.


Assuntos
Técnicas de Química Analítica/métodos , Radiação , Adsorção , Microscopia Eletrônica de Transmissão , Temperatura , Fatores de Tempo , Difração de Raios X
18.
Sci Rep ; 9(1): 13203, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534163

RESUMO

The accumulated heat energy of a heat-storage material is typically released over time. If a heat-storage material could preserve its accumulated heat energy for a prolonged period, the applicability of such materials would be expanded greatly. Herein we report a newly fabricated heat-storage material that can store latent heat energy for a long period and release the heat energy upon demand by applying an extremely low pressure. This material is a block-type lambda trititanium pentoxide (block-type λ-Ti3O5). The block-type λ-phase accumulates a large heat energy of 237 kJ L-1 and exhibits a pressure-induced phase transition to beta trititanium pentoxide. The pressure-induced phase transition occurs by applying only several tens of bars, and half of the fraction transforms by 7 MPa (70 bar). Such a low-pressure-responsive heat-storage ceramic is effective to reuse excessive heat in automobiles or waste heat at industrial factories.

19.
Sci Rep ; 8(1): 63, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323134

RESUMO

Phase transition materials are attractive from the viewpoints of basic science as well as practical applications. For example, optical phase transition materials are used for optical recording media. If a phase transition in condensed matter could be predicted or designed prior to synthesizing, the development of phase transition materials will be accelerated. Herein we show a logical strategy for designing a phase transition accompanying a thermal hysteresis loop. Combining first-principles phonon mode calculations and statistical thermodynamic calculations considering cooperative interaction predicts a charge-transfer phase transition between the A-B and A+-B- phases. As an example, we demonstrate the charge-transfer phase transition on rubidium manganese hexacyanoferrate. The predicted phase transition temperature and the thermal hysteresis loop agree well with the experimental results. This approach will contribute to the rapid development of yet undiscovered phase transition materials.

20.
Sci Rep ; 7(1): 8088, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839222

RESUMO

Recent developments in terahertz technologies provide new tools for analysis, inspection, and nondestructive sensing. If a heavy atom is encapsulated in a cage of a porous material, the atom should vibrate slowly and resonate with a low-frequency terahertz light. From this perspective, a cyanide-bridged metal framework is a suitable system because it contains many cages that can adsorb Cs ions. Herein we show the vibration mode of a Cs ion in a cage of a cyanide-bridged metal framework. First-principles phonon mode calculations and terahertz time-domain spectroscopy (THz-TDS) measurements indicate that the vibration mode of a Cs ion in a cyanide-bridged manganese-iron framework is at 1.5 THz, which is significantly apart from other lattice vibrations. Taking advantage of this feature, we develop a THz-light detection method for Cs ions, which is useful for non-contact sensing of Cs ions in dangerous environments or harmful circumstances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA