Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(12): E1072-81, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616510

RESUMO

The multifunctional Creb-binding protein (CBP) protein plays a pivotal role in many critical cellular processes. Here we demonstrate that the bromodomain of CBP binds to histone H3 acetylated on lysine 56 (K56Ac) with higher affinity than to its other monoacetylated binding partners. We show that autoacetylation of CBP is critical for the bromodomain-H3 K56Ac interaction, and we propose that this interaction occurs via autoacetylation-induced conformation changes in CBP. Unexpectedly, the bromodomain promotes acetylation of H3 K56 on free histones. The CBP bromodomain also interacts with the histone chaperone anti-silencing function 1 (ASF1) via a nearby but distinct interface. This interaction is necessary for ASF1 to promote acetylation of H3 K56 by CBP, indicating that the ASF1-bromodomain interaction physically delivers the histones to the histone acetyl transferase domain of CBP. A CBP bromodomain mutation manifested in Rubinstein-Taybi syndrome has compromised binding to both H3 K56Ac and ASF1, suggesting that these interactions are important for the normal function of CBP.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Acetilação , Animais , Sítios de Ligação , Proteína de Ligação a CREB/química , Proteínas de Ciclo Celular/química , Drosophila , Células HeLa , Humanos , Modelos Moleculares , Ligação Proteica
2.
PLoS Biol ; 10(1): e1001243, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22272185

RESUMO

SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Q(a), Q(b), and Q(c)) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Q(a) SNARE, leaving behind a Q(bc)R subcomplex. This subcomplex serves as an acceptor for a Q(a) SNARE from the opposite membrane, leading to Q(a)-Q(bc)R trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the Q(bc)R cis-complex and the formation of the Q(a)-Q(bc)R trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.


Assuntos
Membranas Intracelulares/metabolismo , Fusão de Membrana , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Cinética , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Mutação/genética , Oxirredução , Ligação Proteica , Estabilidade Proteica , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
3.
Nat Commun ; 15(1): 2132, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459011

RESUMO

Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.


Assuntos
Replicação do DNA , Neoplasias , Animais , Humanos , Camundongos , DNA , Instabilidade Genômica , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Imunidade Inata , Proteína Homóloga a MRE11/metabolismo , Neoplasias/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
4.
Prog Biophys Mol Biol ; 163: 143-159, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33675849

RESUMO

Human uracil DNA-glycosylase (UDG) is the prototypic and first identified DNA glycosylase with a vital role in removing deaminated cytosine and incorporated uracil and 5-fluorouracil (5-FU) from DNA. UDG depletion sensitizes cells to high APOBEC3B deaminase and to pemetrexed (PEM) and floxuridine (5-FdU), which are toxic to tumor cells through incorporation of uracil and 5-FU into DNA. To identify small-molecule UDG inhibitors for pre-clinical evaluation, we optimized biochemical screening of a selected diversity collection of >3,000 small-molecules. We found aurintricarboxylic acid (ATA) as an inhibitor of purified UDG at an initial calculated IC50 < 100 nM. Subsequent enzymatic assays confirmed effective ATA inhibition but with an IC50 of 700 nM and showed direct binding to the human UDG with a KD of <700 nM. ATA displays preferential, dose-dependent binding to purified human UDG compared to human 8-oxoguanine DNA glycosylase. ATA did not bind uracil-containing DNA at these concentrations. Yet, combined crystal structure and in silico docking results unveil ATA interactions with the DNA binding channel and uracil-binding pocket in an open, destabilized UDG conformation. Biologically relevant ATA inhibition of UDG was measured in cell lysates from human DLD1 colon cancer cells and in MCF-7 breast cancer cells using a host cell reactivation assay. Collective findings provide proof-of-principle for development of an ATA-based chemotype and "door stopper" strategy targeting inhibitor binding to a destabilized, open pre-catalytic glycosylase conformation that prevents active site closing for functional DNA binding and nucleotide flipping needed to excise altered bases in DNA.


Assuntos
Reparo do DNA , Uracila-DNA Glicosidase , Domínio Catalítico , Citidina Desaminase , Dano ao DNA , Humanos , Antígenos de Histocompatibilidade Menor , Uracila , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
5.
Nat Commun ; 10(1): 5654, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827085

RESUMO

Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.


Assuntos
Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Poli ADP Ribosilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Bibliotecas de Moléculas Pequenas/química
6.
FEBS Lett ; 591(20): 3378-3390, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28862749

RESUMO

We coupled peptides from a CNBr digest of signal-sequenceless maltose-binding protein (MBP) to a surface plasmon resonance chip. SecA-N95, SecA-N68, and SecA-DM (which consists of only the DEAD Motor domains NBD1 and NBD2) bound to the immobilized peptides; ADP weakened the binding. SecA-DM, which lacks the 'preprotein cross-linking domain' (PPXD), displayed the most extensive binding, while an MBP-PPXD chimera showed no binding, demonstrating that the PPXD does not contribute to the binding. We characterized the sequence specificity using oriented peptide libraries; these results enabled synthesis of a 20-residue peptide that was used to recapitulate the results obtained with MBP-derived peptides. This study shows that there is a promiscuous and nucleotide-modulated peptide-binding site in the DEAD Motor domains of SecA.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/química , Biblioteca de Peptídeos , Canais de Translocação SEC/química , Thermus thermophilus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas SecA , Eletricidade Estática , Especificidade por Substrato , Termodinâmica , Thermus thermophilus/genética
7.
Cell Cycle ; 13(3): 440-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24275038

RESUMO

The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.


Assuntos
Histonas/metabolismo , Mitose , Treonina/metabolismo , Sequência de Aminoácidos , Anticorpos/imunologia , Especificidade de Anticorpos , Linhagem Celular Tumoral , Cromatina/metabolismo , Histonas/genética , Histonas/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleossomos/metabolismo , Fosforilação , Ligação Proteica
8.
Cell Rep ; 8(1): 177-89, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24953651

RESUMO

Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Histona Acetiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Reparo de DNA por Recombinação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Pontos de Checagem da Fase G1 do Ciclo Celular , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , Fosforilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
Nat Commun ; 4: 1704, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591871

RESUMO

The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.


Assuntos
Dinaminas/metabolismo , Fusão de Membrana , Proteínas SNARE/metabolismo , Dinaminas/fisiologia , Ligação Proteica , Proteínas SNARE/fisiologia
10.
Bioarchitecture ; 2(2): 59-69, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22754631

RESUMO

SNARE complexes mediate membrane fusion in the endomembrane system. They consist of coiled-coil bundles of four helices designated as Qa, Qb, Qc and R. A critical intermediate in the fusion pathway is the trans-SNARE complex generated by the assembly of SNAREs residing in opposing membranes. Mechanistic details of trans-SNARE complex formation and topology in a physiological system remain largely unresolved. Our studies on native yeast vacuoles revealed that SNAREs alone are insufficient to form trans-SNARE complexes and that additional factors, potentially tethering complexes and Rab GTPases, are required for the process. Here we report a novel finding that a HOPS tethering complex dimer catalyzes Rab GTPase-dependent formation of a topologically preferred QbQcR-Qa trans-SNARE complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA